
http://www.ixsystems.com/

http://www.ixsystems.com/

http://www.ixsystems.com/

06/20124

CONTENTS

Editor in Chief:
Ewa Dudzic

ewa.dudzic@software.com.pl

Contributing:
Kris Moore, Carlos Antonio Neira, Benedikt Niessen, Jesse Smith,

Giovanni Bechis, Luca Ferrari, Rob Somerville, Michael Shirk,
Paul Ammann

Top Betatesters & Proofreaders:
Paul McMath, Bjorn Michelsen, Barry Grumbine, Eric De La Cruz,

Luca Ferrari, Imad Soltani, Norman Golisz, Sander Reiche,
Mahesh J., Rob Cabrera, Pablo Halamaj, Cleiton Alves

Special Thanks:
Denise Ebery

Art Director:
Ireneusz Pogroszewski

DTP:
Ireneusz Pogroszewski

ireneusz.pogroszewski@software.com.pl

Senior Consultant/Publisher:
Paweł Marciniak pawel@software.com.pl

CEO:
Ewa Dudzic

ewa.dudzic@software.com.pl

Production Director:
Andrzej Kuca

andrzej.kuca@software.com.pl

Executive Ad Consultant:
Ewa Dudzic

ewa.dudzic@software.com.pl

Advertising Sales:
Patrycja Przybyłowicz

patrycja.przybylowicz@software.com.pl

Publisher :
Software Press Sp. z o.o. SK

ul. Bokserska 1, 02-682 Warszawa
Poland

worldwide publishing
tel: 1 917 338 36 31
www.bsdmag.org

Software Press Sp z o.o. SK is looking for partners from all over
the world. If you are interested in cooperation with us, please

contact us via e-mail: editors@bsdmag.org

All trade marks presented in the magazine were used only for
informative purposes. All rights to trade marks presented in the

magazine are reserved by the companies which own them.

Mathematical formulas created by Design Science MathType™.

Dear Readers,
As well as previous issue(s), June issue, focuses on BSD
security. I hope that there are not too many articles dedicated to
this topic out there. If you are interested in this field, you will find
many interesting articles that would help you upgrade your skills.
As we’ve mentioned in the last issue, the security field is really
interesting part of our life – desired, useful and practical field
to explore. By reading articles related to this area, you not only
improve your admin skills, but also secure your system and data.
We know that this area is one of the most wanted and in June
issue, you can discover several good pieces of work made by
our authors. I hope you will enjoy reading them.

If you are keen on DNS security, just go to page 6 and check
out the next part of Paul Ammann’s article.

In Part 2, Paul looks at protocol-based threats to the
operation and administration of DNS. Also, he’ll examine
DNS protocol methods to address these threats. Non-DNS
protocol based solutions such as IPSec are beyond the scope
of this article, but could be a more appropriate solution for an
organization based on its infrastructure.

Also, I would like to present the two series published by BSD
magazine.

On page 12, you’ll find the article written by Rob Somerville.
This time Rob shows you how to examine different defensive
methods to deter and track attackers. In part 6 you will also read
how to examine some techniques that can assist in identifying
and delaying attacks.

Second one is Luca Ferrari’s article about PostgreSQL:
Server-Side Programming. In the previous article readers have
learnt how to write simple triggers and stored procedures using
plpgsql PostgreSQL extension to SQL. In June, Perl will be used
as a language for both triggers and procedures showing how
PostgreSQL can be flexible for server-side programming.

Next comes Joseph Kong with his Synchronization Problems
or: How I Learned to Stop Worrying and Love the Sleep Mutex.
Joseph addresses his article to the problem of data and state
corruption caused by concurrent threads.

And for all of those who want more, just go to page 44 to
see the article written by Edward Tan on Upgrading Ports Using
Portmaster. You will learn about portmaster and the ports tree,
find out more on the infinity loop of upgrading ports as well as
you find some tips and tricks of using portmaster.

So, again this issue is more security related. I hope it is
something that you expected.

If you still need more, we have special offer for you. Just go
to page 11 and see the books list published by No Starch Press.
They’ve prepared the special code for BSD readers.

Now, you can buy Joseph Kong’s book at lower price, so
if you like his article and would like to learn more, just use the
code NEWBUS to get 30% discount.

If you like such offers, just let me know – if you like our
articles or would like to share some of your expectations – write
me back.

Enjoy Reading!
Ewa Dudzic

& BSD Team

www.bsdmag.org 5

Contents

Using Qjail to set up the basejail
by Benedict Reuschling

FreeBSD’s jail system offers process isolation within a
separate environment in order to secure the host system.
In case of a compromised service, only the jail running
that service is affected. In a similar fashion, ZFS allows the
creation of a separate filesystem for each jail. Benedict, in
his article, explains how jails can be quickly instantiated
using a third party wrapper script called Qjail.

How To
PostgreSQL: Server-Side Programming
Part 2
by Luca Ferrari

Luca claims that one great advantage of PostgreSQL
is that it can run functions written in several foreign
languages other than pure SQL and its extension plpgsql
or the standard C. There are extensions that allow
developers to write procedures using Java, Perl, Python
and even Bash-like scripting! In this article Perl will be
used as a language for both triggers and procedures
showing how PostgreSQL can be flexible for server-side
programming.

Developer’s Corner
Synchronization Problems or: How I
Learned to Stop Worrying and Love the
Sleep Mutex
by Joseph Kong

When two or more threads executing on different
processors simultaneously manipulate the same data
structure, that structure can be corrupted. Fortunately,
FreeBSD contains multiple solutions to this problem.
Joseph addresses his article to the problem of data and
state corruption caused by concurrent threads.

ZFS
ZFS Madness with BEADM
– How To
by Sawomir Wojciech Wojtczak
(vermaden)

Some time ago Slawomir found a good, reliable
way of using and installing FreeBSD and
described it in my Modern FreeBSD
Install [1] [2] HOWTO. Now, more then
a year later he come back with his
experiences about that setup
and a proposal of newer and a
lot better way of doing it.

Security
DNSSEC: Threats to DNS Transactions
Part 2
by Paul Ammann

The threats to a DNS transaction depend on the type
of transaction. Name resolution queries and responses
(DNS query/response) between DNS clients (stub
resolver or resolving name server) and DNS servers
(caching/resolving name server or authoritative name
server) could involve any nodes in the Internet. Paul, in
his article, looks at protocol-based threats to the operation
and administration of DNS.

Anatomy of a FreeBSD Compromise
Part 6

by Rob Somerville
While it is impossible to secure a server against every
possible form of attack that the dark side may muster,
by taking defensive steps the system administrator can
make life exceedingly difficult for the hacker and can
delay if not totally avoid a successful attack. Rob claims
that while many of the suggestions are probably second
nature to most admins, it cannot be stressed enough with
busy schedules and tight deadlines the importance of
preventative maintenance which has a tendency to slip
down the priority list. Rob also examines some techniques
that can assist in identifying and delaying attacks.

06

44��

12

38

20

26

SECURITY

06/2012 6 www.bsdmag.org 7

DNSSEC: Threats to DNS Transactions Part 2

Hence, the threats against them are much
greater in number and severity compared to
those for zone transfer, dynamic update, and

DNS NOTIFY transactions. In general, the nodes
involved in zone transfer, dynamic update, and DNS
NOTIFY transactions are all within the administrative
domain of a single organization. The [only] exceptions
are instances in which the primary or secondary name
servers of an organization are run on its behalf by ISPs
or other organizations. There usually is a preexisting trust
relationship in these cases, however, so it is not difficult
to set up a mutual authentication system for DNS zone
transfers.

In this article, we’re going to look at protocol-based
threats to the operation and administration of DNS. Also,
we’ll examine DNS protocol methods to address these
threats. Non-DNS protocol based solutions such as
IPSec are beyond the scope of this article, but could be a
more appropriate solution for an organization based on its
infrastructure.

DNS Query/Response
DNS name resolution queries and responses (DNS
query/response) generally involve single, unsigned, and
unencrypted UDP packets. The known threats to DNS
query/response transactions have been documented in
IETF RFC 3833 and can be classified as follows:

• Threat #12: Forged or bogus response
• Threat #13: Removal of some RRs from the response
• Threat #14: Incorrect expansion rules applied to

wildcard RRs in a zone file.

Forged or Bogus Response
A forged or bogus response is a response which is
different from what the legitimate authoritative name
server expects. A bogus response can originate from:

• A compromised authoritative name server (for queries
originating from a resolving name server)

• A poisoned cache of a resolving name server (for
queries originating from a stub resolver).

An authoritative name server could be compromised by
a platform-level attack on its OS or communication stack
(see the May 2012 issue).

The cache of a resolving (caching) name server could
be poisoned by the following attacks:

• Packet Interception. In this type of attack, the attacker
eavesdrops on a request and is able to generate and
send a response by spoofing an authoritative name
server before the real response from the legitimate
authoritative name server reaches the resolving name
server.

DNSSEC: Threats to DNS
Transactions Part 2
The threats to a DNS transaction depend on the type of transaction.
Name resolution queries and responses (DNS query/response)
between DNS clients (stub resolver or resolving name server) and
DNS servers (caching/resolving name server or authoritative name
server) could involve any nodes in the Internet.

What you will learn…
• Different threats to DNS transactions and how to mitigate them

What you should know…
• You should have some knowledge and background of DNS and

how it works

SECURITY

06/2012 6 www.bsdmag.org 7

DNSSEC: Threats to DNS Transactions Part 2

action might result in a name resolution query failure and
consequent denial of service.

Incorrect Expansion
Rules Applied to Wildcard RRs
Many zones use wildcard RRs to economize on the
volume of data in the zone file. The wildcard patterns
are used for synthesizing RRs on the fly in generating
responses for name resolution queries. (The synthesis
rules are outlined in section 4.3.2 of IETF RFC 1034.)
If synthesis rules are applied incorrectly in a name
server, the RRs associated with resources existing in an
organization may not be generated and made available
in a DNS response. This fault also results in denial of
service.

Protection Approach
for DNS Query/Response Threats
The underlying feature in the major threat associated
with DNS query/response (i.e., forged response or
response failure) is the integrity of DNS data returned
in the response. Hence, the security objective is to verify
the integrity of each response received. An integral part
of integrity verification is to ensure that valid data has
originated from the right source. Establishing trust in
the source is called data origin authentication. Hence,
the security objectives – and consequently the security
services – that are required for securing the DNS query/
response transaction are data origin authentication and
data integrity verification.

These services could be provided by establishing trust
in the source and verifying the signature of the data sent
by that source. The specification for a digital signature
mechanism in the context of the DNS infrastructure is
in IETF’s DNSSEC standard. The objectives, additional
RRs, and DNS message contents involved in the
DNSSEC are specified through RFCs 4033, 4034, and
4035. In DNSSEC, trust in the public key (for signature
verification) of the source is established not by going
to a third party or a chain of third parties (as in public
key infrastructure [PKI] chaining), but by starting from
a trusted name server (such as the root name server)
and establishing the chain of trust down to the current
source of response through successive verifications of
signature of the public key of a child by its parent. The
public key of the trusted name servers is called the trust
anchor.

After authenticating the source, the next process
DNSSEC calls for is to authenticate the response.
This requires that responses consist of not only the
requested RRs but also an authenticator associated

• ID Guessing and Query Prediction. In this type of
attack, the attacker guesses the ID field in the header
of the DNS request message (because this field is
only 16 bits long, brute force guessing is possible)
and possibly the QNAME and QTYPE (owner name
and RRType, respectively). The attacker then injects
bogus data into the network as a response by
spoofing a name server.

• Responses Accumulated from a Compromised Autho-
ritative Name Server. A compromised authoritative
name server is directed by a controlling adversary to
send out bogus responses to queries from resolving
name servers.

The impacts on a system serviced by a resolving name
server that has a poisoned cache are as follows:

• Denial of Service. If some crucial RRs such as
address records (A RRs) are forged, the system
that requires this information can never establish
connectivity with the intended node.

• Client Redirection through Cache Poisoning. Client
redirection is performed by selective poisoning of
DNS RRs whose RDATA element contains a name.
Examples of such RRs are CNAME, NS, and MX.
The name resolution (i.e., IP address) information
for these names is found in a set of additional
information (or glue records when discussing a
delegation response). Normally the resolving name
server obtains these necessary A/AAAA RRs
through follow-up queries (also called triggered
queries). The responses flowing into the network
from these follow-up queries present yet another
opportunity for the attacker to insert bogus records.
First the attacker can introduce arbitrary names of the
attacker’s choosing in the RDATA portion of selected
RRs; then the attacker can insert the IP addresses of
servers (chosen by the attacker) in associated glue
records that are transmitted as an answer to follow-
up queries. This type of attack on two sets of related
responses is called a name chaining attack. The
overall effect of poisoning the cache of a resolving
name server this way is to misdirect several clients
who are making use of the services of that resolving
name server. Redirecting the users to nodes of
the attacker’s choosing may enable the attacker to
capture sensitive information such as passwords.

Removal of Some RRs
Apart from injecting bogus or forged data in a response,
an attacker could also remove RRs from a response. This

SECURITY

06/2012 8

with them. In DNSSEC, this authenticator is the digital
signature of an RRSet. The digital signature of an
RRSet is encapsulated through a special RRType called
RRSIG. The DNS client using the trusted public key of
the source (whose trust has just been established) then
verifies the digital signature to detect if the response is
valid or bogus.

To ensure that RRs associated with a query are really
missing in the zone file and have not been removed in
transit, the DNSSEC mechanism provides a means for
authenticating the nonexistence of an RR. It generates
a special RR called an NSEC RR that lists the RRTypes
associated with an owner name as well as the next name
in the zone file. It sends this special RR, along with its
signature, to the resolving name server. By verifying
this signature, a DNSSEC-aware resolving name server
can determine which authoritative owner name exists in
a zone and which authoritative RRTypes exist at those
owner names.

To protect against the threat of incorrect application
of expansion rules for wildcard RRs, the DNSSEC
mechanism provides a means of comparing the validated
wildcard RR against an NSEC RR and thereby verifying
that the name server applied the wildcard expansion rules
correctly in generating an answer.

DNSSEC can guarantee the integrity of name
resolution responses to DNS clients acting on behalf
of Internet-based resources, provided the clients
perform the DNSSEC signature verification. In many
cases, however, these DNS clients are stub resolvers
that are not DNSSEC-aware. If signature verification
is performed by the resolving name server providing
name resolution service for the clients that are stub
resolvers, the end-to-end integrity of the response data
can be guaranteed only by protecting the communication
channel between the resolving name server and the stub
resolver.

IETF’s design criteria consider DNS data to be
public; hence, confidentiality is not one of the security
goals of DNSSEC. DNSSEC is not designed to directly
protect against denial-of-service threats, although
it does so indirectly by providing message integrity
and source authentication. DNSSEC also does not
provide communication channel security because name
resolution queries and responses travel over millions
of nodes of the public Internet. DNSSEC also can lead
to a new type of weakness that did not exist in DNS
before. An artifact of how DNSSEC performs negative
responses allows a client to map all the names in a zone.
This is called Zone Walking. Zone Walking provides an
attacker with a “map” of a target zone with all domain

names and IP addresses in the zone and enables him/
her to determine the configuration of the internal network
and launch some targeted attacks on some key hosts.
Therefore, it is advisable that a zone only contains zone
data that the administrator wants to be made public.
For internal DNS, something like split-DNS could be
deployed.

Zone Transfer
Zone transfers are performed to replicate zone files in
multiple servers to provide a degree of fault tolerance
in the DNS service provided by an organization. Threats
from zone transfers have not been documented formally
through any IETF RFCs. A few threats could be expected,
however: the first threat, denial of service, is common for
any network transaction. The second threat is based on
exploitation of knowledge gained from the information
provided by zone transfers. The third threat is common to
any network packet.

• Threat #15 – Denial of Service: Because zone
transfers involve the transfer of entire zones, they
place substantial demands on network resources
relative to normal DNS queries. Errant or malicious
frequent zone transfer requests on the name servers
of the enterprise can overload the master zone
server and result in denial of service to legitimate
users.

• Threat #16: The zone transfer response message
could be tampered.

The denial-of-service can be minimized if servers
allowed to make zone transfer requests are restricted
to a set of known entities. To configure this restriction
into the primary name server, there should be a means
of identifying those entities. Name server software
such as BIND initially provided a configuration feature
to restrict zone transfer requests to a set of designated
IP addresses. Because IP addresses can be spoofed,
however, this mode of configuration does not provide
an adequate means of restricting zone transfer
access.

The IETF developed an alternate mechanism called
a transaction signature (TSIG), whereby mutual
identification of servers is based on a shared secret
key. Because the number of servers involved in zone
transfer is limited (generally restricted to name servers
in the same administrative domain of an organization),
a bilateral trust model that is based on a shared secret
key may be adequate for most enterprise (except for very
large ones). TSIG specifies that the shared secret key

www.bsdmag.org 9

DNSSEC: Threats to DNS Transactions Part 2

be used not only for mutual authentication but also for
signing zone transfer requests and responses. Hence,
it provides protection against tampering of zone transfer
response messages (threat T15). Protection of DNS
data alone (the payload) in a zone transfer message
also can be ensured through verification of signature
records accompanying RRs from a DNSSEC-signed
zone. These signatures, however, do not cover all the
information in a zone file (e.g., delegation information).
Furthermore, they enable verification of only the individual
RRsets and not the entire zone transfer response
message.

There is also another method to authenticate DNS
transactions by using asymmetric cryptography (i.e.
public key cryptography). The format of the SIG(0) RR
is similar to the resource record signature (RRSIG) RR,
and can be validated using a public key stored in the DNS
(instead of a shared secret key). SIG(0) can be more
computational expensive to use, but offer an advantage
in that a previous trust relationship may not be necessary
to use SIG(0) signed messages. However, since most
zone transfers occur between parties that have a
previously established relationship, it is considered
easier to implement TSIG for authenticating zone transfer
transactions.

Alternatives to TSIG
Although TSIG is widely deployed, there are several
problems with the protocol that you should be aware
of:

• It requires distributing secret keys to each host which
must make updates.

• The HMAC-MD5 digest is only 128 bits.
• There are no levels of authority. Any host with the

secret key may update any record.

As a result, a number of alternatives and extensions
have been proposed:

• RFC 2137 specifies an update method using a
public key “SIG” DNS record. A client holding the
corresponding private key can sign the update
request. This method matches the DNSSEC
method for secure queries. However, this method is
deprecated by RFC 3007.

• In 2003, RFC 3645 proposed extending TSIG to allow
the Generic Security Service (GSS) method of secure
key exchange, eliminating the need for manually
distributing keys to all TSIG clients. The method for
distributing public keys as a DNS resource record

(RR) is specified in RFC 2930, with GSS as one
mode of this method. A modified GSS-TSIG, using
the Windows Kerberos Server, was implemented
by Microsoft Windows Active Directory servers and
clients called Secure Dynamic Update. In combination
with poorly configured DNS (with no Reverse Lookup
Zone) using RFC 1918 addressing, reverse DNS
updates using this authentication scheme are
forwarded en masse to the root DNS servers and
increase the traffic to root DNS servers in the course
of doing so[1]. There is an anycast group which deals
with this traffic to take it away from the root DNS
servers [2].

• RFC 2845, which defines TSIG, specifies only one
allowed hashing function HMAC-MD5, which is no
longer considered to be highly secure. As of 2006,
proposals are being circulated to allow RFC 3174
Secure Hash Algorithm (SHA1) hashing to replace
MD5. The 160-bit digest generated by SHA1 should
be more secure than the 128-bit digest generated by
MD5.

• RFC 2930, which defines TKEY, a DNS Record used
to automatically distribute keys from a DNS server to
DNS clients.

• RFC 3645, which defines GSS-TSIG which uses gss-
api and TKEY to automatically distribute keys in gss-
api mode.

• The DNSCurve proposal has many similarities to
TSIG.

Dynamic Updates
Dynamic updates involve DNS clients making changes
to zone data in an authoritative name server in real time.
Clients typically performing dynamic updates are CA
servers, DHCP servers, or Internet Multicast Address
servers. As with zone transfer transaction, the threats
associated with dynamic update transaction have not
been officially documented by the IETF through an
RFC. The following are some common threats that
could be expected, based on the fact that dynamic
updates involve a data update request transiting a
network.

• Threat #17 – Unauthorized Updates: Unauthorized
updates could have several harmful consequences
for the content of zone data. Some harmful data
operations include: (a) adding illegitimate resources
(new FQDN and new RRs to a valid zone file), (b)
deleting legitimate resources (entire FQDN or specific
RRs), and (c) altering delegation information (NS RRs
pointing to child zones).

SECURITY

06/2012 10

• Threat #18 : The data in a dynamic update request
could be tampered.

• Threat #19 – Replay Attacks: Update request
messages could be captured and resubmitted later,
thus causing inappropriate updates.

Threats #16 and #17 could be countered by
authenticating the entities involved and providing a
means to detect tampering of the messages. Because
these security objectives in the case of zone transfer are
met by the TSIG/SIG(0) mechanism, the same TSIG/
SIG(0) mechanism is specified for protecting dynamic
updates.

Although the dynamic update message contains some
replay attack (Threat #18) protection in the prerequisite
field of the message, TSIG/SIG(0) provides an additional
mechanism to protect against replay attacks by including
a timestamp field in the dynamic update request.

This signed timestamp enables a server to determine
whether the timing of the dynamic update request is
within the acceptable time limits specified in the configu-
ration.

It sometimes makes more sense to use SIG(0)
protection mechanisms for dynamic update than for
zone transfer. Dynamic update transactions may happen
between parties that do not always have a prior security
relationship or may be part of a bootstrapping operation.
Therefore it may be impractical to use TSIG with a shared
secret, but SIG(0) authentication using keys stored in the
DNS may be a possibility.

Another possibility is to rely on lower level network layer
to provide security such as IPSec. This would remove the
need for authentication at the DNS (application) layer.
How to set up this level of security is beyond the scope
of this guide.

DNS Notify
DNS NOTIFY is a message sent by primary (master)
name servers to secondary (slave) name servers,
causing the secondary servers to start a refresh operation
(e.g. query for SOA RR to check the serial number, etc.)
and perform a zone transfer if an update to the zone
has occurred. Because the NOTIFY message is only a
signal, there are only minor security risks in dealing with
the message. The primary security risk to consider is the
following:

• Threat #20 – Spurious NOTIFY Messages: Secondary
name servers would receive spurious DNS NOTIFY
messages from sources other than the primary name
server.

The only impact of receiving spurious DNS NOTIFY
message is the increase in workload in secondary
name servers since a zone transfer will only occur when
an updated zone is on the primary server. Because
this threat is low impact, the only protection approach
required is to configure the secondary name servers to
receive DNS NOTIFY message only from the enterprise’s
primary name server. However, if TSIG is set up for use
for all communication between a set of hosts, TSIG will
be used with NOTIFY messages as well.

Summary
Let’s recap what we’ve learned in this article.

There are a number of threats to DNS query/response:
forged or bogus responses, removal of records (RRs)
in responses, and incorrect application of wildcard
expansion rules. Your security objectives should be data
origin authentication and data integrity verification.

With zone transfers, you should be concerned with
denial of service and tampering of messages. Your
security objective is mutual authentication and data
integrity verification.

Dynamic update is susceptible to unauthorized updates,
tampering of messages, and replay attacks. Focus should
be on mutual authentication, data integrity verification,
and signed timestamps.

In Part 3, we look at how to secure the DNS hosting
environment.

PAUL AMMANN
Paul Ammann lives in New Fairfeld, CT with his wife and 4 cats.
You can reach him at pq_aq (at) fastmail (dot) us.

Footnotes
1. http://www.caida.org/publications/papers/2003/dnsspectro

scopy/
2. http://public.as112.net/

http://www.caida.org/publications/papers/2003/dnsspectroscopy/
http://www.caida.org/publications/papers/2003/dnsspectroscopy/
http://public.as112.net/

�������������������������������

���������������

��
�������������������������

���
�����������������������

����������������������
�����������
�����������������
��������
��������������������������������
�����������������������������������

http://www.nostarch.com

SECURITY

06/2012 12 www.bsdmag.org 13

Anatomy of a FreeBSD Compromise (Part 6)

While it is impossible to secure a server against
every possible form of attack that the dark
side may muster, by taking defensive steps

the system administrator can make life exceedingly
difficult for the hacker and can delay if not totally avoid
a successful attack. While many of the suggestions in
this article are probably second nature to most admins, it
cannot be stressed enough with busy schedules and tight
deadlines the importance of preventative maintenance
which has a tendency to slip down the priority list. We
will also examine some techniques that can assist in
identifying and delaying attacks.

Steps to practical security
Is your software up to date?
Old software with documented vulnerabilities is the
hackers dream. Even if steps are taken to prevent
the identification of services, with the automated tools
available to the attacker, taking the gamble that a well
documented exploit may work is trivial. While patching
is not the full solution (and software regression is
always a possibility), this step closes the door to the
well documented exploits. It is also always worth
testing new software and patches in a development
environment to see what weaknesses are present. The
author recently installed a major CMS and was writing
a validation routine for a database query, and as part

of the testing of the code discovered a bug in the core
software. The test (typing garbage into an HTML test
field) was handled correctly by the new module, but
the problem lay further back up the chain. While this
“manual” discovery revealed a weakness, a software
fuzzer would be a more efficient way of testing. The fact
remains that an un-patched system is more of at risk
than an patched one.

Reduce your available footprint
Apart from the bloat, is that service/software/
application essential? Running services 24/7 that are
only occasionally required increases risk. 5 minutes to
write a shell script that puts a server into maintenance
mode and runs remote services such as Webmin and
SSH for remote access is one quick workaround.
Alternatively, run SSH only and turn services on as
required remotely. It is a good plan to “daisy chain”
access, e.g. only have SSH running on one machine
and tunnel through to other machines once inside the
network (with a separate user login/password for an
additional layer of security).

A good �rewall / proxy is essential
An additional layer of security is vital on any public facing
Internet connection. Even at the most rudimentary level,
traffic shaping, packet inspection, malformed request

Anatomy

In the final part in our series, we will examine different
defensive methods to deter and track attackers.

What you will learn…
• Common techniques used to deter hackers

What you should know…
• BSD and network administration skills

of a FreeBSD Compromise
Part 6

SECURITY

06/2012 12 www.bsdmag.org 13

Anatomy of a FreeBSD Compromise (Part 6)

Keep a baseline
System backups, binary file checksums using utilities
such as Tripwire, or even a totally read-only system
environment are essential on critical systems. Run regular
scans such as chkrootkit or rkhunter to identify rootkits
or suspicious binary files. Gently portscan your network
from another network on a regular basis to identify any
open ports that may have appeared due to changed
configurations. Keep a log of changes e.g. patch history,
modifications and software updates.

Security by obscurity
Many flame-wars can be found on the Internet on the
subject of security by obscurity. As an approach alone,
it is seriously flawed as the determined hacker will not
be distracted by minor modifications to a system that do
not address core security. However, it does provide the
system administrator with an additional layer that may
delay the more popular and common attacks. A “quiet”
server which does not announce services on common
ports and obscures software versions will be harder to
analyze, and false trails can be laid using honey-pots
etc. The other side of the coin is that an observant hacker
will pick up on the fact that the system administrator has
taken the trouble to disguise what is really going on and
will consider the server a valuable target.

rejection etc. can mitigate some crude attacks, but it
is not the complete solution. From the administration
point of view, a single dedicated server that centrally
deals with security is good practice, and this can be
expanded with Intrusion Detection Systems (e.g. Snort),
honey-pots and tar pits as required. How sophisticated
this appliance is depends very much on the architecture
and services available on your network, but not all
firewall technology is equal. See (Table 1) What is deep
inspection?

Move the door handle
Unless you are running a service which must run on a
standard port (e.g. HTTP or SMTP), consider relocating
the service to a high non-standard port. Most casual
scans do not bother past port 1024. The author manages
a number of web servers, and one web application runs
on a high port rather than port 80. To date, the amount
of suspicious traffic in the Apache logs is zero. Other
Apache boxes get at least 5 probes per day on the
same domain. Also consider the market of your ISP /
comms provider, mass market “consumer” providers
with lots of un-patched PC’s will have a lot more noise
than a provider that is geared towards the business
sector.

Be observant
Logs, stats and email alerts are an essential aid in
identifying incidents. Develop an intuition for the
extraordinary – once you are familiar with the usage
patterns on your network, anything out of the ordinary
will quickly become apparent. Make sure your logs are
backed up and taken off-line at regular intervals, as this
may provide useful evidence if an attacker does gain
access and manages to obscure the trail by deleting their
activity. Alternatively, use a dedicated log server or flag
critical files with the append only flag sappend.

Tune your environment
Don’t rely on the default settings provided by software
out of the box to provide security. A good example is
SSH, Version 1.0 is better than Telnet, but limiting your
server to V 2.0 connections is a better approach. Limit
access to “those that really must”. Consider limiting
access on time basis (e.g. disable internal proxies out
of business hours). Chrooting critical applications such
as webservers etc. on multiple service servers is a
good idea. Use encryption where possible, and when
developing sensitive web applications help your visitors
by automatically redirecting to a secure domain and
disallowing unencrypted traffic. Figure 1. A sophisticated security layout

SECURITY

06/2012 14 www.bsdmag.org 15

Anatomy of a FreeBSD Compromise (Part 6)

Used alone, security by obscurity is not a viable method
to protect a server. Used with other techniques, it can
buy the administrator some time and facilitate additional
information gathering on the attacker.

Honeypots, tar pits and Intrusion Detection
Systems
A honeypot is a dedicated sever that acts as a “sacrificial
target” and a deliberate lure for attackers. A number
of different strategies can be employed, depending on
exactly what the administrator wants to achieve. The
basic premise is that the honeypot exposes various
dummy services (e.g. web-server, database, email etc)
to the attacker so that information can be gathered about
the strategies used to compromise networks and collect
information on the attackers IP address, etc. A honeypot
can be purely sacrificial in that sufficient authority is
given to the attacker so that they can destroy the box,
or with some creative scripting and firewall rules the
honeypot can be more proactive e.g. return a portscan
the attacker. A tar pit is a variation on the honypot theme,
in that it is “sticky” – e.g. a telnet service is exposed to
the attacker, and instead of timing out, the connection
is persistent, so the attack is effectively trapped and
contained – like an insect on flypaper. The IDS on
the other hand monitors suspect traffic on the wire,
depending on a set of rules. The most common solutions
include Honeyd, Labrea and Nessus or Snort. A complex
layout is illustrated in Figure 1.

Honeypot 1 is totally sacrificial, lying outside the
firewall it is totally exposed to any attack and is used
to establish a baseline and a resource for researching
attacks on this particular network. Honeypot 2 is used
to gather information on traffic that has passed through
to the DMZ, and Honeypot 3 any serious attacks that
reach the internal network. The 2 IDS monitor illicit
traffic at the DMZ and inside the network. With firewall
rules, it is possible to re-direct any undesired requests
to the honeypot, which will further confuse and delay
the attacker. For example, where a port scan is initiated
on port 25 (SMTP) of the webserver, the firewall could
redirect port 25 traffic to the honeypot. As desired,
the administrator can replace honeypots with tar-
pits, depending on how they wish to handle hacker
activity.

While this layout is excessive for a small network, it
demonstrates the different roles of each device. It is up to
the administrator to decide the best strategy, depending
on the resources available. Running a honeypot requires
commitment, and is not a solution in itself. Depending on
your locality, the legal position may be a very gray area,

as technically they honeypot or tar-pit is intercepting
the attackers communications. There is also the matter
of what to do with the information gathered – is there a
process for dealing with this (Fire back at the attacker or
just monitor?) and when is an attack considered serious
enough to engage law enforcement? The answer to
these will depend very much on the network and the
organization.

Mod Security
Mod security is a web application firewall that runs under
Apache and can provide a further layer of security to a
webserver. Providing both a positive and a negative rule
model (e.g. only valid requests are accepted or known
bad requests are rejected) Mod Security can be tailored
exactly to the security model the administrator wishes
to enforce. With some tuning, it can even bounce the
rejected request to a honeypot, tar-pit or another external
site.

Lets get practical
The following setups were performed on a FreeBSD 9.0-
RELEASE box running Apache 2.2.21 and OpenSSH 5.8
running on port 22. Due to the restrictive nature of Mod_
security, test this out on a development box first or run
it in DetectionOnly mode as the restrictive rule set will
probably break your webserver.

Installing Mod_Security

 cd /usr/ports/www/mod_security21

 make install clean

 cd /usr/local/etc/apache22/Includes/mod_security2

 cp modsecurity_crs_10_config.conf config-crs-10.000

 mkdir /var/log/modsecurity

 chown www:www /var/log/modsecurity

Edit the modsecurity _ crs _ 10 _ config.conf file to show:

 SecRuleEngine On

 SecDebugLog /var/log/modsecurity/modsec_debug.log

 SecAuditLog /var/log/modsecurity/modsec_audit.log

Amend http.cond to read:

 LoadFile /usr/local/lib/libxml2.so

 LoadModule security2_module libexec/apache22/mod_security2.so

Restart Apache:

 /usr/local/etc/rc.d/apache22 restart

SECURITY

06/2012 14 www.bsdmag.org 15

Anatomy of a FreeBSD Compromise (Part 6)

Check that your webserver still works by pointing a
browser at port 80 on the target machine. You may
need to comment out the following line in modsecurity _

crs _ 21 _ protocol _ anomalies.conf with a # if you are
accessing the test machine via an IP address rather
than a host name:

 SecRule REQUEST_HEADERS:Host „^[\d\.]+$”

 „deny,log,auditlog,status:400,msg:’Host header is a

numeric IP address’,

 severity:’2’,id:’960017’”

Spin up Backtrak Armatage and fire an attack at the test
box (Figure 2). If you view modsec _ audit.log you should
see the following similar entries (Figure 3):

• Rogue request is sent from 192.168.0.114
• Mod _ security closes the connection with a 500 error
• The pattern match why the request was rejected
• The action carried out

The Tar Pit
Labrea will populate your network with dummy tar-pitted
hosts using ARP. Use with caution on a live network. As
the developer says labrea can break things in the network.
So you are encouraged to read the README. For those
that are impatient though:

Install and run Labrea (replace em0 with your network
interface as appropriate):

 cd /usr/ports/security/labrea

 make install clean

 LaBrea -z -s -o -b -p 10000 -i em0

Using nmap, your host should report whatever ports
open you have running software on. Now pick an IP
address that you you know is not allocated on your
network (In my case 192.168.0.132) and ping it: Listing 1.

Hmm. What happens if we run NMAP against it? See
(Figure 4). According to NMAP, I have telnet running (sic)
what happens when I try and access it?

 telnet 192.168.0.132

 Trying 192.168.0.132...

 Connected to 192.168.0.132.

 Escape character is ‘^]’.

Figure 3. Mod security log shows 500 error returned

Figure 2. Attacking the host with Armitage

SECURITY

06/2012 16

Labrea has created a tar-pit telnet session, complete
with successful connection string but no connection.

A SSH honeypot
Secure Shell is the standard for remote CLI access
to servers. Encrypted end-to-end traffic, the ability
to use password or key authentication makes this
essential software in the Administrators toolkit.
Unfortunately, the popularity of SSH means it is
vulnerable to probing by attackers, and if insecure
passwords are used (or root access not disabled) it
attracts the wrong sort of attention.

One useful strategy is to install Kippo, a SSH
honeypot based on Python that will not only act as a
dummy SSH server, but will also log all the attackers
session activity which will help the administrator
identify what strategy the attacker is adopting
and what malware or rootkits they are installing. If
required, Kippo can be run on a high port (e.g. 2222)
and SSH requests on port 22 redirected using IPFW
of PF etc. Kippo emulates the Linux filesystem, but
this can ne changed if desired. Execute the following:
Listing 2.

The following directories and files will be
extracted:

• dl/ – files downloaded with wget are stored here
• log/kippo.log – log/debug output
• log/tty/ – session logs
• utils/playlog.py – utility to replay session logs
• utils/createfs.py – used to create fs.pickle
• fs.pickle – fake filesystem
• honeyfs/ – file contents for the fake filesystem

Now run kippo on port 2222 of your honeypot:

 ./start.sh

Kippo will generate a RSA key pair. Spin up Nmap or
Zenmap and scan your server, you should see port
2222 open (Figure 5). Let us now “compromise” our
honeypot and install and run a linux rootkit (Replace
192.168.0.131 with the destination IP address of
your honeypot): Listing 3.

Kippo rejects the request, and all the “attackers”
commands are logged (Figure 6). If you are feeling
particularly malevolent, you can execute:

WARNING – Ensure you are in sales: before you
execute this destructive command!

 rm -fr /*

Listing 1. LaBrea in action

 ping 192.168.0.132

 PING 192.168.0.132 (192.168.0.132) 56(84) bytes of data.

 From 192.168.0.103 icmp_seq=1 Destination Host Unreachable

 From 192.168.0.103 icmp_seq=2 Destination Host Unreachable

 From 192.168.0.103 icmp_seq=3 Destination Host Unreachable

 64 bytes from 192.168.0.132: icmp_req=4 ttl=255 time=196 ms

 64 bytes from 192.168.0.132: icmp_req=5 ttl=255 time=95.6 ms

 64 bytes from 192.168.0.132: icmp_req=6 ttl=255 time=94.3 ms

 64 bytes from 192.168.0.132: icmp_req=7 ttl=255 time=33.2 ms

Listing 2. Installing Kippo

 su

 pkg_add -r py27-twisted py27-pycrypto

 wget http://kippo.googlecode.com/files/kippo-0.5.tar.gz

 exit

 tar -xvzf kippo-0.5.tar.gz

 cd kippo-0.5

 ls

Figure 4. NMAP found 1000 ports but is struggling to get O/S signature etc.

www.bsdmag.org 17

Anatomy of a FreeBSD Compromise (Part 6)

Listing 3. Kippo honeypot session

 ssh root@192.168.0.131 -p2222

 The authenticity of host '[192.168.0.131]:2222

([192.168.0.131]:2222)' can't be

established.

 RSA key fingerprint is ea:75:13:cc:8e:98:c9:e3:e3:72:74:

93:99:5e:01:fb.

 Are you sure you want to continue connecting (yes/no)?

yes

 Warning: Permanently added '[192.168.0.131]:2222' (RSA)

to the list of known hosts.

 Password: 123456

 sales:~# cd /

 sales:/# ls -alh

 drwxr-xr-x 1 root root 0 2009-11-20 08:19 sys

 drwxr-xr-x 1 root root 4096 2009-11-08 15:42 bin

 drwxr-xr-x 1 root root 4096 2009-11-06 11:08 mnt

 drwxr-xr-x 1 root root 4096 2009-11-06 11:08 media

 [...]

 -rwxrwxrwx 1 root root 25 2009-11-06 11:16 vmlinuz

 sales:/# wget www.tiger1ne.netfast.org/rk.tgz

 --2012-05-07 20:06:20-- http://

www.tiger1ne.netfast.org/rk.tgz

 Connecting to www.tiger1ne.netfast.org:80... connected.

 HTTP request sent, awaiting response... 200 OK

 Length: 754474 (736K) [application/x-gzip]

 Saving to: 'rk.tgz

 100%[======================================>] 754,474

132K/s eta 0s

 2012-05-07 20:06:25 (132 KB/s) – 'rk.tgz' saved

[754474/754474]

 sales:/# tar -xvzf rk.tgz

 rk-asdqw

 [...]

 rk-asdqw/bin

 sales:/# cd rk-asdqw /bin

 sales:/rk-asdqw# ls -alh

 drwxr-xr-x 1 root root 4096 2007-07-16 15:48 bin

 drwxr-xr-x 1 root root 4096 2007-07-16 15:48 conf

 [...]

 -rw-r--r-- 1 root root 3200 2004-11-26 14:18 setup

 sales:/rk-asdqw# ./setup sillypassword 10077

 {o,o}

 |)__)

 -"-"-

O RLY?

Listing 4. SSH guard in action

 ssh 192.168.0.131

 Password: yourpasswordhere

 Last login: Mon May 7 19:26:18 2012 from 192.168.0.103

 FreeBSD 9.0-RELEASE (GENERIC) #0: Tue Jan 3 07:15:25

UTC 2012

Welcome to FreeBSD!

exit

 Connection to 192.168.0.131 closed.

 ssh 192.168.0.131

 Password:

 Password:

 Password:

 Permission denied (publickey,keyboard-interactive).

 ssh 192.168.0.131

 Password:

 Password:

 Password:

 Permission denied (publickey,keyboard-interactive).

 ssh 192.168.0.131

 ssh_exchange_identification: Connection closed by remote

host

SECURITY

06/2012 18 www.bsdmag.org 19

Anatomy of a FreeBSD Compromise (Part 6)

Your current Kippo session will not allow you to exit, but
if you re-attach with another SSH session, sales will be
undamaged.

Rejecting failed SSH logins
Using the utility SSHguard the administrator can run
a normal SSH session and monitor via syslog for any
unauthorized activity in auth.log. Ensure you have direct
physical console access or another machine with a
different IP address and SSH installed before running this
– when you lock yourself out of SSH you will be locked out
of your server.

 pkg_add -r sshguard

Now edit your rc.conf file to reflect the following:

 syslogd_enable=”YES”

 syslogd_flags=”-ss” # local log

Edit syslog.conf to run SSHguard when unauthorized
activity observed:

 # Added for SSHguard support

 auth.info;authpriv.info |exec /usr/local/sbin/sshguard

Reboot:

 reboot

You should be able to login via SSH on the remote host
as normal. Exit from your SSH session, and attempt
another SSH login but this type press [Enter] at the
password prompt: Listing 4. If you now examine /var/log/
auth.log you should see similar entries to this: Listing 5.

SSH access is now disabled to 192.168.0.103 for 10
minutes. Access from 192.168.0.254 was not restricted. If
desired, SSHguard can be configured to use firewall rules
to totally deny access to all ports from the attacker – see
http://www.sshguard.net.

In conclusion
There are many counter-measures the administrator
can deploy to confuse, track and investigate hackers.
The biggest hurdle in implementing a robust security
environment is the time it takes to adequately test
and tune the modifications for each individual server
or network especially in a production environment.

Listing 5. SSH guard log

 May 7 20:00:00 hacker sshguard[1139]: Started successfully [(a,p,s)=(40, 420, 1200)], now ready to scan.

 May 7 20:00:42 hacker sshd[1156]: error: PAM: authentication error for testuser from 192.168.0.103

 May 7 20:00:51 hacker sshd[1161]: error: PAM: authentication error for testuser from 192.168.0.103

 May 7 20:00:51 hacker sshguard[1139]: Blocking 192.168.0.103:4 for >630secs:

 40 danger in 3 attacks over 9 seconds (all: 40d in 1 abuses over 9s).

 May 7 20:00:52 hacker sshd[1161]: error: PAM: authentication error for testuser from 192.168.0.103

 May 7 20:00:52 hacker sshd[1161]: error: PAM: authentication error for testuser from 192.168.0.103

 May 7 20:01:04 hacker sshd[1167]: refused connect from 192.168.0.103 (192.168.0.103)

 May 7 20:08:17 hacker sshd[1178]: Accepted keyboard-interactive/pam for testuser

 from 192.168.0.254 port 62276 ssh2

Figure 5. NMAP found port 2222 open (NTOP running on port 3000)

http://www.sshguard.net

SECURITY

06/2012 18 www.bsdmag.org 19

Anatomy of a FreeBSD Compromise (Part 6)

Thankfully, the *BSD community is well ahead of the curve
with an attitude of “security first”. Hopefully, other sectors
of the software industry will follow suit, as collectively we
cannot rise above the lowest common denominator.

Ultimately, it is a balancing act between practicality and
risk, and it may be more appropriate to roll out a solution
that causes the least disruption but catches 85% of the
attacks automatically with the remaining 15% being
monitored by manual traditional methods of observation.
The closer you get to perfection, the greater the chance
that inadvertently something will break, or worst still, false
positives will be generated.

Using the arsenal of tools documented in this series
gives the administrator the ability not only to identify
issues, but opens the Pandora’s box of the security
world – how to remain one step ahead of an enemy who
never sleeps and is constantly on the lookout for new
opportunities. Unfortunately, IT security is shrouded in a
lot of hype, and as many front line support engineers will
testify, products sometimes do not perform as expected.

Figure 6. Kippo log�le
Table 1. Further reading and resources

Further reading

Description URL
Security through obscurity Ain't What They
Think It Is

http://web.archive.org/web/20070202151534/http://www.bastille-linux.org/jay/obscurity-
revisited.html

Six dumbest ideas in computer security http://www.ranum.com/security/computer_security/editorials/dumb

What is deep inspection? A discussion about
DPI versus proxy �rewalls

http://www.ranum.com/security/computer_security/editorials/deepinspect/index.html

Honeypots – Tracking the hackers http://books.google.co.uk/books?id=xBE73h-zdi4C

Mastering FreeBSD and OpenBSD security http://books.google.co.uk/books?id=gqKwaHmXp4YC

Table 2. FreeBSD security software resources

Security software

Description URL
Tripwire – File system security and veri�cation program http://sourceforge.net/projects/tripwire

Sshguard – Protect hosts from brute force attacks against ssh
and other services

http://www.sshguard.net

Labrea – Security tarpit defense tool http://labrea.sourceforge.net/labrea-info.html

Honeyd – Simulate virtual network hosts (honeypots) http://www.honeyd.org

Kippo – SSH honeypot http://code.google.com/p/kippo/

Modsecurity – An intrusion detection and prevention engine http://www.modsecurity.org

Hardening FreeBSD http://www.bsdguides.org/guides/freebsd/security/harden.php

ROB SOMERVILLE
Rob Somerville has been passionate about technology since
his early teens. A keen advocate of open systems since the mid
eighties, he has worked in many corporate sectors including
�nance, automotive, airlines, government and media in a
variety of roles from technical support, system administrator,
developer, systems integrator and IT manager. He has moved on
from CP/M and nixie tubes but keeps a soldering iron handy just
in case.

http://web.archive.org/web/20070202151534/http://www.bastille-linux.org/jay/obscurity-revisited.html
http://web.archive.org/web/20070202151534/http://www.bastille-linux.org/jay/obscurity-revisited.html
http://www.ranum.com/security/computer_security/editorials/dumb
http://www.ranum.com/security/computer_security/editorials/deepinspect/index.html
http://books.google.co.uk/books?id=xBE73h-zdi4C
http://books.google.co.uk/books?id=gqKwaHmXp4YC
http://sourceforge.net/projects/tripwire
http://www.sshguard.net
http://labrea.sourceforge.net/labrea-info.html
http://www.honeyd.org
http://code.google.com/p/kippo/
http://www.modsecurity.org
http://www.bsdguides.org/guides/freebsd/security/harden.php

SECURITY

06/2012 20 www.bsdmag.org 21

Using Qjail to set up the basejail

This adds to the power of jails as each jail can have
its own set of filesystem parameters such as quotas
and reservations. While ZFS is relatively easy to

set up, jails usually needs a bit more effort. This article
explains how jails can be used a third party wrapper script
called Qjail. Together with ZFS, it offers great flexibility in
handling multiple jails and can even save some storage
space.

What is Qjail?
The FreeBSD handbook has a whole chapter about
setting up jails. This usually involves a lengthy buildworld
and installworld process, which takes a lot of time. To
reduce the build time to practically zero, wrappers have
been created as third party software. With Qjail, a jail can
be set up quickly (hence the preceding q) without requiring
a whole buildworld and installworld run beforehand. In
addition, it offers management functionalities like starting
and stopping jails, listing all jails currently configured on
the system and even instantiating multiple jails at once.

Qjail was developed by Joe Barbish and released under
the BSD license. While it is basically a set of powerful shell
scripts, it is not very difficult to learn or use. To install it on
FreeBSD, use the ports collection where it resides under
sysutils/qjail. It comes with extensive documentation
including examples for each subcommand in the form of
two man pages (qjail-intro(8) and qjail(8)) which explain

the basic philosophy behind its development and how to
make use of it, respectively.

Qjail does not require a full buildworld/installworld cycle
to create a jail. Instead, it downloads official FreeBSD
releases from the mirror servers provided by the project.
Since these releases contain everything needed to run a
complete FreeBSD system, it can also be used for jails.
Qjail simply downloads a FreeBSD release as a basic jail
called basejail, from which each new jail is spawned.

Qjail is capable of creating two different kinds of jails:
directory based jails and sparse image file based jails.
Directory based jails share the same disk space as the host
and can theoretically grow to the maximum available disk
space of the drive it’s installed on. Sparse image file jails
are different in that their size must be set at the time of their
creation, but only occupy as much space as they currently
need. This article explains directory based jails only. However,
sparse image file based jails are not difficult to set up and are
explained in great detail in the qjail(8) man page.

Qjail also makes use of the nullfs filesystem to link
files that are common to the basic jail infrastructure from
the host system. This reduces the overhead of copying
the files into each jail and saves a lot of disk space. It
also simplifies jail management. For example, when an
updated library is installed, all jails automatically use that
library once they are restarted since they are all using a
link to it provided by nullfs.

Using Qjail to set up
the basejail
FreeBSD’s jail system offers process isolation within a separate
environment in order to secure the host system. In case of a
compromised service, only the jail running that service is affected.
In a similar fashion, ZFS allows the creation of a separate filesystem
for each jail.

What you will learn…
• The basics of setting up jails using qjail
• Managing jails with the tools qjail provides

What you should know…
• The fundamentals of jails and what they were designed to do
• Creating ZFS �lesystems and setting speci�c options for them

SECURITY

06/2012 20 www.bsdmag.org 21

Using Qjail to set up the basejail

the basejail needs to be done only once. For this example,
we are going to fetch an official release from the FreeBSD
FTP servers. It will be installed into our ZFS filesystem
we’ve just created. The command is qjail install and the
output is shown in Listing 1.

Qjail notifies us that our current system is not based
on an official FreeBSD release and provides a listing of
files on the FTP server which it thinks can be used as an
install source. We’re going to use 8.2-RELEASE as the
basis for our jails (we will update them to a more current
release later in this article) and enter this at the prompt.
Next, a rather lengthy and verbose FTP fetch session
will occur, which has been replaced by … to shorten
the listing. After the fetch operation has finished, four
new directories have been created in /usr/jails: archive,
basejail, newjail, and flavors. The archive directory is
used when archiving a jail, which we don’t cover here.
You can find more information about archiving jails in
qjail(8). In basejail, all the base system files we just
downloaded are being stored. It should be very familiar,
since it is basically everything a FreeBSD system needs
to run and what will later be part of the jail as well (refer
to hier(7) if neccessary). You can trim down the jails a bit
by deleting files and directories you know you won’t need
in your jails. For example, it is safe to delete the /usr/
jails/basejail/boot directory, as jails do not go through a
real boot process and therefore don’t need a kernel and
loadable modules. The newjail directory has symlinks into
the basejail directory for bin/, boot/ (obsolete as well when

Using Qjail to Set up the basejail
Before we can create a jail, we need to set up our system
so that it can hold our basejail. The basejail and all the
other jails we create from it will be stored in a separate
ZFS filesystem. This article assumes that you’ve already
set up your zpool with one or more disks (substitute
<poolname> in the examples below with your actual pool
name). Qjail uses the directory /usr/jails to set up its
directory structure. Since we’ll be using ZFS, we create
this directory structure ourselves by typing:

zfs create -o mountpoint=/usr/jails -o compression=

on <poolname>/usr/jails

Note that if your /usr directory is already on a ZFS
filesystem, you might need to adjust the mountpoints
above accordingly. You can also use a different kind
of compression algorithm or higher/lower compression
levels to fit your needs (depending on what kind of files
you store in the jail). This is just to show you that the files
placed in there are good candidates for compression.
Activating deduplication using zfs set dedup=on data/

usr/jails is optional, but the more jails you have on the
same filesystem, the more you can benefit from this
space-saving feature as there are many files that can be
deduplicated.

Next, we use the qjail command to download and install
a minimal basejail, without a source tree and manual
pages. This will slim down the size of our jails. Installing

Listing 1. Fetching and creating the basejail infrastructure

Your system is 9.0-PRERELEASE.

Normally FTP-servers don’t provide non-RELEASE-builds.

Querying your ftp-server...

The ftp server you specified (ftp2.freebsd.org) provides the following RELEASE distributions:...Select one.

7.4-RELEASE

8.2-RELEASE

ISO-IMAGES

README.TXT

amd64

Release [9.0-PRERELEASE]: 8.2-RELEASE

…

Basejail & newjail are being populated.

Est LT 1 minute elapse time for this to complete.

Successfully installed qjail system.

SECURITY

06/2012 22

deleting the boot directory from the basejail), lib/, libexec/,
sbin/, and sys/. This will be used to instantiate a new jail.
The last of the four directories is called flavors, and is
helpful if you want to create certain kind of jails that are
configured in a similar fashion. For example, if you want
to make sure that certain settings are made in rc.conf in
each of the jails, you could create a certain flavor for this
configuration. When creating a jail, you can tell qjail that
this new jail should be based on a certain flavor and all the
settings in rc.conf will be created automatically based on
your settings in the flavor script. In our example, Qjail will
use a default flavor with no special jail settings.

Spawning a jail from the basejail
Now that the basic infrastructure of qjail is installed, we
can create our first jail called testjail. Each new jail will be
created below the /usr/jails directory, so our testjail will

reside in /usr/jails/testjail. To make management a little
easier, we’ll use ZFS to set an (arbitrary) storage limit for
the jail before creating it.

zfs create -o quota=200m -o reservation=200m -o

compression=on <poolname>/usr/jails/testjail

Make sure that the ZFS filesystem has exactly the same
name that you are going to give to the jail. Depending
on how much storage space the jail is going to need,
you can raise or lower the quota and reservation being
shown here. Next, we create the jail using the qjail
create command shown in Listing 2.

Qjail created a new jail with the IP alias 192.168.0.2
on em0 (substitute these values with the NIC and network
configuration at your site) and named it testjail. A new directory
structure below /usr/jails/testjail has been created as a
result of this command. If you compare the directories that
have been created, you’ll discover that the symlinks are the
same as in the newjail directory, since this is being used a
a kind of template for each new jail. This is just one jail, but
you can create multiple jails with Qjail using the command in
Listing 3.

The -D option followed by a number up to 100 adds a
suffix number for the current jail to the jail name, like prison-
1, prison-2, and so on. Using the option -I in conjunction
with the -D option will increase the IP address octet by
one so that each jail gets its own IP alias assigned to
em0. In our example, prison-1 will have the IP address
192.168.0.3, prison-2 will get 192.168.0.4 and prison-3 is
reachable on 192.168.0.5 once the jails are running. This is
very convenient when you need to quickly create multiple
jails and don’t want to create aliases first. The aliases are
created on the specified NIC when the jail is started and will
also be removed again once the jail is stopped.

Starting and Stopping jails
It’s simple to start, stop, or restart jails with Qjail. Use
the name of the jail in the qjail start command to run a
single jail or leave it out to start all jails that are not running
currently. Listing 4 shows this for our example jails created
earlier. Now, we have all the jails running on our system.
Note that you need to work with the jailnames, as Qjail does
not accept the jail IDs that are listed in the output of jls.

Checking the Status of Running jails
Qjail also provides a command to list all running jails and
show some associated information like the IP-address
currently assigned to each jail. To show this list, use the
command qjail list. An example output is provided in
Listing 5.

Listing 2. Creating a jail

qjail create -n em0 testjail 192.168.0.2

Successfully created testjail

Listing 3. Creating multiple jails

qjail create -n em0 -D 3 -I prison 192.168.0.2

Successfully created prison-1

Successfully created prison-2

Successfully created prison-3

Listing 4. Creating multiple jails

qjail start testjail

Jail started successfully. testjail

qjail start

Jail already running. testjail

Jail started successfully. prison-3

Jail started successfully. prison-2

Jail started successfully. prison-1

Listing 5. Showing the status of all running jails

STA JID NIC IP Jailname

--- ---- --- --------------- ------------------------

DR 1 em0 192.168.0.2 jailname

DR 2 em0 192.168.0.5 prison-3

DR 3 em0 192.168.0.4 prison-2

DR 4 em0 192.168.0.3 prison-1

www.bsdmag.org 23

Using Qjail to set up the basejail

The first column named STA displays the status of the
jail in that line. In this example, the D indicates that this
jail is directory based. If you were using sparse image
file based jails, an I would be shown instead. R indicates
that this jail is currently running. An S would have told us
that this jail has been stopped.

The next field is JID, which shows the ID of the jail. This is
the same unique identifier that jls will list for that particular
jail, but only if it is running. The NIC field shows the network
interface that is associated with the jail and which is handling
the traffic. If this field is empty, as opposed to say em0 or
fxp1, it means that said jail has no NIC configured. Until we
change that using the qjail configure command detailed
below, this jail will not be able to do any networking. The
following field, IP, is obviously the IP address alias that this
jail is using. Lastly, the Jailname column shows the name
that the jail has been assigned at the time of its creation.

Accessing the jail From the Host System
Now that a jail has been created and is running, we can
connect to the console to do basic system administration
tasks as the root user. To do that, use the following
command to get access to a root shell within the jail: qjail
console testjail. To quit that root jail (log out), simply use
the same commands you would use to quit your host
system’s shell like exit, logout or ^D (CTRL+D). Even if
there are no users available in the system yet, we can use
this command to access the jail’s console at any time.

Making Ports Available in the jail
Since the jails will host the services we want to isolate form
the base system, we need a way to install sofware using
the ports collection. As such, we need to have access to
our own ports tree within the jail. While we cannot use the
ports tree from the base system (since that would allow

Listing 6. Updating the ports tree in the jail

qjail update -p testjail

Sun Apr 15 13:36:36 CEST 2012

The elapse download time of the portsnap compressed ports file

is estimated at 25 minutes for the initial fetch.

Subsequent fetches will generally take less than a minute.

Looking up portsnap.FreeBSD.org mirrors... 4 mirrors found.

Fetching snapshot tag from portsnap1.FreeBSD.org... done.

Fetching snapshot metadata... done.

Updating from Sat Apr 14 13:34:31 CEST 2012 to Sun Apr 15 13:25:17 CEST 2012.

Fetching 4 metadata patches... done.

Applying metadata patches... done.

Fetching 0 metadata files... done.

Fetching 102 patches.....10....20....30....40....50....60....70....80....90....100. done.

Applying patches... done.

Fetching 5 new ports or files... done.

Portsnap fetch completed successfully

Sun Apr 15 13:36:48 CEST 2012

The ports basejail/usr/ports directory tree is being updated.

The elapse time for this to complete is estimated at 1 minute

to 10 minutes depending on how current your ports system is.

Portsnap update completed successfully

SECURITY

06/2012 24 www.bsdmag.org

jails access outside of the environment they are restricted
to), we can easily make it available using qjail. If no ports
tree is installed yet, qjail will invoke portsnap to fetch the
complete ports tree and make it available for the jails in
the directory /usr/jails/basejail/usr/ports.

Listing 6 shows the update of an already installed ports
tree using portsnap. After the ports tree has been updated,
you can log into the jail as shown above and run your
favorite utility to install ports in the jail.

Updating jails managed by qjail
Remember the 8.2-RELEASE we had to fetch in the qjail
install example above? Suppose we have been using our
Qjail-managed jails for quite some time and a new version
(major or minor) of FreeBSD has been released. Since we
want to make use of the updates and potential security
fixes as well as performance and stability improvements
in our jails, Qjail can help with updating the jails. First, the
host system needs to be updated using either freebsd-
update or make buildworld/installworld. Once that has been
completed, we can tell Qjail to replace the jail system
binaries with the updated host system binaries. To do that
for our testjail, issue the following command: qjail update
-b testjail whose output is shown in Listing 7.

First, we will be notified that these binaries cannot be
replaced while the jail is still running. Hence we use qjail
stop testjail to stop it. Repeat the update command again
and it will detect that the jail has been stopped and will
begin deleting the old binaries in the jail and copying the
new files from the host system. For each system folder
being updated, a status message will be printed. After the
host’s binaries have all been copied without any errors,
the last thing we need to do is to start the jail again using
the command qjail start testjail. It will now start with
the updated system binaries and we have completed
updating this jail.

Configuring the jails
The only thing left to do is making sure that the jails will
automatically start when the host system is rebooted. To
do that, you need to add the following line to /etc/rc.conf
in the host system: qjail_enable=”YES”. After that, each jail
will be started when the host is booting. In case you do
not want to start all of your jails, you can exclude some
of them with the qjail configure command. Listing 8 will
show this for our testjail.

Another way to use the qjail configure command is
to assign another name to a jail. Let’s say our testjail
is running some webserver and we want to reflect
that in its name. Since this would affect the underlying
ZFS filesystem as well, we need to rename it first:

Listing 7. Updating the base system binaries of the jail

Error: All jails have to be stopped. This jail is

running. testjail

qjail stop testjail

Jail stopped successfully. testjail

qjail update -b testjail

Deletion of basejail binaries successful for bin.

Deletion of basejail binaries successful for boot.

Deletion of basejail binaries successful for lib.

Deletion of basejail binaries successful for libexec.

…

Deletion of basejail binaries successful for usr/

lib32.

Copied host’s binaries to basejail successfully for

bin.

Copied host’s binaries to basejail successfully for

boot.

Copied host’s binaries to basejail successfully for

lib.

…

Copied host’s binaries to basejail successfully for

usr/lib32.

Host to basejail binaries update completed

successfully.

qjail start testjail

Jail started successfully. testjail

Listing 8. Recon�guring a jail not to be run at boot time

qjail config -r norun testjail

Successfull set norun testjail

Listing 9. Renaming a jail

qjail config -n webjail testjail

Successfully renamed testjail

Listing 10. Assigning a different IP address to a jail

qjail config -i 127.0.0.1 prison-1

Successful ip change prison-1

SECURITY

06/2012 24 www.bsdmag.org

zfs rename <poolname>usr/jails/testjail <poolname>/usr/

jails/webjail. Then we can rename the testjail (after we’ve
stopped the jail first) with the command in Listing 9.

To change the IP address assigned to a jail, you
can also use the qjail config command as shown in
Listing 10.

With that, we have seen most, but not all of the tools that
Qjail provides for creating and managing jails effectively
and easy. ZFS adds more to the power by compressing
and deduplicating the storage space these jails are using,
as well as limiting jails from allocating too much space
by using quotas and reservations. Make sure to read the
qjail man page as there are many more interesting and
powerful things you can do with this jail management
utility.

BENEDICT REUSCHLING
Benedict Reuschling has been using FreeBSD since 5.2.1-
RELEASE. He was lurking quietly on the FreeBSD mailing lists
until 2008 when he joined the FreeBSD German Documentation
team. After having received his commit bit for the FreeBSD
project’s documentation set as well, he’s been involved in many
aspects of documentation around FreeBSD. Having worked in
the private sector at a number of companies during his time as
a student, he now enjoys teaching students at the Department
of Computer Science of his alma mater where he spent so
much time with his own education. During his spare time, he is
practicing the Tai Chi Yang style to relax and get his mind off of
things.

On the ‘Net
• http://www.freebsd.org/doc/en_US.ISO8859 -1/books/

handbook/jails.html – The FreeBSD handbook chapter
about jails,

• http://qjail.sourceforge.net/ – The homepage of Qjail.
• http://qjail.sourceforge.net/Qjail-Intro.htm – qjail-intro(8)

man page
• http://qjail.sourceforge.net/Qjail%20Manual.htm – qjail(8)

man page

Glossary
• Host system: The system that will host the jails and from

which jails are being managed.
• Base system: These are the utilities that are shipped with

the operating system such as cp, ls, and top among many
others. They are also available in the jails.

• Jail: Isolates processes using sophisticated enhancements
to the chroot(8) facility to run a separate system inside the
host system.

http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/jails.html
http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/jails.html
http://qjail.sourceforge.net/
http://qjail.sourceforge.net/Qjail-Intro.htm
http://qjail.sourceforge.net/Qjail%20Manual.htm
https://register.bsdcertification.org//register/payment
http://www.bsdcertification.org/
https://register.bsdcertification.org//register/get-a-bsdcg-id

HOW TO

06/2012 26 www.bsdmag.org 27

PostgreSQL: Server-Side Programming (Part 2)

In this article Perl will be used as a language for both
triggers and procedures showing how PostgreSQL
can be flexible for server-side programming. Finally,

the listen/notify IPC mechanism embedded into the
database will be presented.

Using Foreign Languages
One great advantage of PostgreSQL is that it can run
functions written in several foreign languages other
than pure sql and its extension plpgsql or the standard
C. There are extensions that allow developers to write
procedures using Java, Perl, Python and even Bash-like
scripting! Chances are that an extension to support your
favourite programming language in PostgreSQL has been
already written.

PostgreSQL allows a foreign language to operate in
two different ways: a “trusted” and an “untrusted” mode.
The trusted mode is the safer: the language will be run
in a sandbox like environment and will not have direct
access to system resources; on the other hand untrusted
languages can escape the sandbox and operate directly
on the hosting system. Developers and administrators
have to carefully decide which language and context is
allowed to be run in each database; by convention the
untrusted version of a language is named as the language
itself with a suffix ‘u’, so that for instance the trusted plperl
language has the untrusted version identified as plperlu.

plperl
The Perl language support is provided by the plperl
module, that can be installed using the port databases/
p5-postgresql-plperl. To install the support for plperl in
the example database it is required to execute the CREATE
LANGUAGE statement (or the equivalent createlang shell
command):

bsdmagdb=# CREATE LANGUAGE plperl;

Once the language has been installed into the database,
it is possible to use it to create procedures and, from
those, triggers. In the previous article a compute _

download _ path was defined to set the download _ path field
once the issuedon field is updated to a non-null value,
and all the existent tuples are updated after a single
INSERT. Using plperl the above function can be written as
follows: Listing 1.

As readers can see the body of the trigger function is
pure Perl. It is worth noting that trigger meta-data (such as
the level or application context) are exported via the $_TD
hash; moreover a Perl trigger function can apply changes
returning the string “MODIFY” or abort changes returning
the string “SKIP” when required. Most notably, Perl being
a foreign language, the execution of SQL queries cannot
be directly done, but special functions must be used to
issue queries to the backend. Such functions are the

PostgreSQL:
Server-Side Programming
Part 2

In the previous article readers have learnt how to write simple
triggers and stored procedures using plpgsql PostgreSQL extension
to SQL.

What you will learn…
• Server-side programming with PostgreSQL
• How to run Perl code within PostgreSQL
• How to use the listen-notify IPC

What you should know…
• Basic SQL concepts
• Basic PostgreSQL concepts
• Difference among stored procedures, triggers and rules

HOW TO

06/2012 26 www.bsdmag.org 27

PostgreSQL: Server-Side Programming (Part 2)

Consider now a little change to the example trigger
that allows the function to copy a PDF file from a source
directory (let say ~/pdf) to a web server directory (let say
/www/downloads): in order to do that the trigger function is
going to use the File::Copy module to access the host file
system. It is required that the procedure be declared in
the “untrusted” version of the Perl language (plperlu), so
drop the plperl support and add the plperlu one (see Box 2

spi_exec_query family that, as readers can see, accept the
SQL statement string and execute them.

Having defined the trigger function it is possible to
associate it to triggers as in the previous example: Listing
2.

As readers can see, the CREATE TRIGGER command does
not care about the language the trigger function has been
declared into.

Listing 1. A trigger procedure written in plperl

CREATE OR REPLACE FUNCTION compute_download_path()

RETURNS trigger

AS

$BODY$

 # a variable to handle the default path

 my ($default_path);

 # check arguments

 if($_TD->{argc} > 0){

 # array reference to the arguments

 @args = @{$_TD->{args}};

 $default_path = $args[0];

 }

 else{

 $default_path = 'http://bsdmag.org/download-demo/';

 }

 # update trigger, modify this single row

 if($_TD->{event} eq "UPDATE"){

 if(defined($_TD->{new}->{issuedon})){

 elog(LOG, "Applying a new download path");

 $_TD->{new}->{download_path} = "'" . $default_

path . "BSD_" . $_TD->{new}->{id} .

".pdf" . "'";

 elog(LOG, "New path is " . $_TD->{new}-

>{download_path});

 }

 else{

 elog(LOG, "Deleting the download path");

 undef($_TD->{new}->{download_path});

 }

 # apply changes

 return "MODIFY";

 }

 # insert level?

 if($_TD->{event} eq "INSERT" && $_TD->{level} eq

"STATEMENT"){

 # here change all the rows calculating the download

path

 $query = "UPDATE magazine SET download_path =

'$default_path' ";

 $query .= " || 'BSD_' || id || '.pdf'";

 $query .= " WHERE download_path IS NULL AND

issuedon IS NOT NULL";

 elog(LOG, "Perl query : $query ");

 spi_exec_query($query);

 return;

 }

$BODY$

Listing 2. Associating the plperl stored procedure to the SQL
triggers

CREATE TRIGGER tr_u_download_path

BEFORE UPDATE OF issuedon

ON magazine

FOR EACH ROW

EXECUTE PROCEDURE compute_download_path('http://

bsdmag.org/download-demo/');

CREATE TRIGGER tr_i_download_path

AFTER INSERT

ON magazine

FOR EACH STATEMENT

EXECUTE PROCEDURE compute_download_path('http://

bsdmag.org/download-demo/');

HOW TO

06/2012 28 www.bsdmag.org 29

PostgreSQL: Server-Side Programming (Part 2)

Listing 3. Exploiting plperl-untrusted to access the local �lesystem from within a trigger procedure

bsdmagdb=# DROP LANGUAGE plperlu CASCADE;

bsdmagdb=# CREATE LANGUAGE plperlu;

CREATE OR REPLACE FUNCTION compute_download_path()

RETURNS trigger

AS

$BODY$

 use File::Copy;

 # a variable to handle the default path

 # and the copy flag

 my ($default_path, $pdf_source_dir, $web_dir);

 # check arguments

 if($_TD->{argc} > 0){

 # array reference to the arguments

 @args = @{$_TD->{args}};

 $default_path = $args[0];

 $pdf_source_dir = $args[1];

 $web_dir = $args[2];

 }

 else{

 $default_path = 'http://bsdmag.org/download-demo/';

 }

 # update trigger, modify this single row

 if($_TD->{event} eq "UPDATE"){

 if(defined($_TD->{new}->{issuedon})){

 elog(LOG, "Applying a new download path");

 my $pdf_name = "BSD_" . $_TD->{new}->{id} .

".pdf";

 my $pdf_path = "'" . $default_path . $pdf_name

. "'";

 elog(LOG, "New path is " . $_TD->{new}-

>{download_path});

 # do I have to copy the file?

 if(defined($pdf_source_dir)){

 my $pdf_dest = $web_dir . "/" . $pdf_name;

 if(! -f $pdf_name){

 my $pdf_source = $pdf_source_dir . "/" .

$pdf_name ;

 elog(LOG, "Copying file $pdf_source into

$pdf_dest ");

 copy($pdf_source , $pdf_dest);

 }

 }

 }

 else{

 elog(LOG, "Deleting the download path");

 undef($_TD->{new}->{download_path});

 }

 # apply changes

 return "MODIFY";

 }

 # insert level?

 if($_TD->{event} eq "INSERT" && $_TD->{level} eq

"STATEMENT"){

 # here change all the rows calculating the download

path

 $query = "UPDATE magazine SET download_path =

'$default_path' ";

 $query .= " || 'BSD_' || id || '.pdf'";

 $query .= " WHERE download_path IS NULL AND

issuedon IS NOT NULL";

 elog(LOG, "Perl query : $query ");

 spi_exec_query($query);

 return;

 }

$BODY$

LANGUAGE plperlu;

HOW TO

06/2012 28 www.bsdmag.org 29

PostgreSQL: Server-Side Programming (Part 2)

for more information) and define the trigger function:
Listing 3.

In the above function the trigger parameters are
extended: there are two more parameters that provide the
source and target directory for copying a PDF, so that the
triggers are created as follows: Listing 4.

When the trigger is executed it is possible to see the
copy of the file from the target directory to the destination
directory: Listing 5.

An e-mail noti�cation system
It is now possible to combine all the concepts expressed
above and shown in the previous article to implement a
simple e-mail notification system: each time a new issue
of the magazine is placed into the magazine table an e-
mail that notifies the availability of such issue is sent to a
list of subscribed readers. The first step is to create and
populate a table that will contain the readers information
(e.g., name and e-mail): Listing 6.

Listing 4. Associating the improved procedure to the SQL triggers

CREATE TRIGGER tr_u_download_path

BEFORE UPDATE OF issuedon

ON magazine

FOR EACH ROW

EXECUTE PROCEDURE compute_download_path('http://bsdmag.org/download-demo/', '~/pdf/', '/www/downloads');

AFTER INSERT

ON magazine

FOR EACH STATEMENT

EXECUTE PROCEDURE compute_download_path('http://bsdmag.org/download-demo/' , '~/pdf/', '/www/downloads');

Listing 5. Firing the trigger execution

bsdmagdb=# UPDATE magazine SET issuedon = '01-01-2010'::text::date WHERE title = 'Nessus and security';

LOG: Applying a new download path

CONTEXT: PL/Perl function "compute_download_path"

LOG: New path is 'http://bsdmag.org/download-demo/BSD_2012-03.pdf'

CONTEXT: PL/Perl function "compute_download_path"

LOG: Copying file ~/pdf//BSD_2012-03.pdf into ~/www/pdf/BSD_2012-03.pdf

CONTEXT: PL/Perl function "compute_download_path"

UPDATE 1

Listing 6. Creating a small readers-archive

CREATE TABLE readers(

 pk SERIAL NOT NULL,

 name text,

 email text,

 PRIMARY KEY(pk),

 UNIQUE(email)

);

INSERT INTO readers(name, email) VALUES('Luca Ferrari', 'lf@fakemail.com');

INSERT INTO readers(name, email) VALUES('Ritchie Root', 'rr@fakemail.com');

ALTER TABLE magazine ADD COLUMN notified_readers integer DEFAULT 0;

HOW TO

06/2012 30 www.bsdmag.org 31

PostgreSQL: Server-Side Programming (Part 2)

Listing 7. A plperlu procedure that will notify readers via e-mail

CREATE OR REPLACE FUNCTION notify_readers(integer)

RETURNS integer

 LANGUAGE plperlu

 AS $_$

 use Mail::Sendmail;

 use MIME::Base64;

 use MIME::QuotedPrint;

 my ($issuepk) = @_;

 my $sent_emails = 0;

 my $query = "SELECT title, download_path FROM

magazine WHERE pk = $issuepk";

 my $boundary = "===BSDMAG===";

 my $sent = 0;

 my ($result_set, $email_text, $name, $current_row,

$email, %mail);

 my ($download_path, $title);

 elog(LOG, "Extracting the issue data via the query

$query\n");

 $current_row = $result_set->{rows}[0];

 $title = $current_row->{"title"};

 $download_path = $current_row->{"download_path"};

 elog(LOG, "Magazine Issue: $title at $download_path

\n");

 $query = "SELECT email, name FROM readers";

 elog(LOG, "Extracting all readers via the query

$query\n");

 $result_set = spi_exec_query($query);

 $num_rows = $result_set->{processed};

 elog(LOG, "Found $num_rows readers\n");

 # iterate on each reader

 for($i = 0; $i < $num_rows; $i++){

 $current_row = $result_set->{rows}[$i];

 $name = $current_row->{"name"};

 $email = $current_row->{"email"};

 # build the e-mail

 %mail = (From => 'postgres@bsdmag.org',

 To => $email,

 Subject => 'New BSD Magazine Issue!'

);

 $mail{smtp} = 'localhost';

 $mail{body} = << "END_OF_BODY";

$boundary--

Content-Type: text/plain; charset="iso-8859-1"

Content-Transfer-Encoding: quoted-printable

Dear $name,

there is a new issue of BSD Magazine available for

download at the URL $download_path

so please check it out!

$boundary----

END_OF_BODY

 sendmail(%mail) or warn($Mail::Sendmail::

error) ;

 $sent++;

 }

 return $sent;

 $_$;

Listing 8. Executing the notify_readers procedure for a speci�c user

bsdmagdb=# select notify_readers(2);

LOG: Extracting the issue data via the query SELECT

title, download_path FROM magazine

WHERE pk = 2

CONTEXT: PL/Perl function "notify_readers"

LOG: Magazine Issue: Rolling Your Own Kernel at http:

//bsdmag.org/download-demo/BSD_2011-

12.pdf

CONTEXT: PL/Perl function "notify_readers"

LOG: Extracting all readers via the query SELECT email,

name FROM readers

CONTEXT: PL/Perl function "notify_readers"

LOG: Found 2 readers

LOG: Notifying reader Luca Ferrari at email

lf@fakemail.com

CONTEXT: PL/Perl function "notify_readers"

LOG: Notifying reader Ritchie Root at email

rr@fakemail.com

CONTEXT: PL/Perl function "notify_readers"

 notify_readers

 2

HOW TO

06/2012 30 www.bsdmag.org 31

PostgreSQL: Server-Side Programming (Part 2)

The magazine table is also altered with a new column,
notified_readers, that will track how many e-mail has been
sent to notify the new issued paper. Now it is time to write
a function that will accept an identifier for a magazine
issue (e.g., the primary key) and will iterate over all the
tuples in the readers table to extract every e-mail address
and name in order to compose a customized e-mail text
and send it. The following is the code of a plperl function
that does the e-mail notification using the Mail::Sendmail
and MIME modules: Listing 7.

As readers can see, the function is quite simple. It first
performs the query against the magazine table to retrieve
the tuple identified by the specified primary key. The tuple
data is stored in the $result_set hash with the rows key,
which contains an array of hashes each one identified
with the name of the column. After having extracted the
information about the magazine to notify, a cycle against

all the tuple of the readers table is performed. Within such
cycle a customized e-mail message is built and sent via a
defined SMTP server. At the end the function returns the
number of e-mail messages sent, that is the number of
readers it tried to notify.

Executing the notification function is really
straightforward: Listing 8.

Having defined the function to notify readers, it is
possible to implement the logic that will fire the function for
a newly issued magazine. The easiest way is to “attach”
such a function to a trigger on the magazine table, so
it is possible to change the trigger that computes the
download path as follows: Listing 9.

As readers can see, if the download_path has been
successfully computed, then the trigger executes the
e-mail notification procedure notify_readers specifying
the primary key (pk) of the tuple. It is then possible to

Listing 9. Embedding the e-mail noti�cation into the trigger procedure

CREATE OR REPLACE FUNCTION compute_download_path()

RETURNS trigger AS

$BODY$

DECLARE

 default_path text;

BEGIN

 -- check if the trigger has a path as argument,

 -- otherwise use a default path

 IF TG_NARGS > 0 THEN

 -- first argument is the path

 default_path := TG_ARGV[0];

 RAISE LOG 'Using a trigger-level path %', default_

path;

 ELSE

 -- a default hard coded path

 default_path := 'http://bsdmag.org/download-demo/';

 END IF;

 -- print an LOG message

 RAISE LOG 'Trigger % executing for % event', TG_NAME,

TG_OP;

 -- if executing for a single column then compute the

path

 IF (TG_OP = 'UPDATE' OR TG_OP = 'INSERT') THEN

 IF NEW.issuedon IS NOT NULL THEN

 NEW.download_path := default_path || 'BSD_' ||

NEW.id || '.pdf';

 RAISE LOG 'Computed download for issue % path is

%', NEW.title, NEW.download_path;

 ELSE

 RAISE LOG 'Removing the download path for issue

%', NEW.title;

 NEW.download_path := NULL;

 NEW.notified_readers := 0;

 END IF;

 -- if here and the download path has been computed

 -- then notify readers

 IF NEW.download_path IS NOT NULL THEN

 SELECT notify_readers(NEW.pk)

 INTO NEW.notified_readers;

 RAISE LOG 'Notified readers %', NEW.notified_

readers;

 END IF;

 -- suppose this is a row trigger

 RETURN NEW;

 END IF;

END;

$BODY$

LANGUAGE plpgsql VOLATILE;

HOW TO

06/2012 32 www.bsdmag.org 33

PostgreSQL: Server-Side Programming (Part 2)

associate the above trigger function after the insert and
update events of each row in the magazine table:

CREATE TRIGGER tr_download_path

AFTER INSERT OR UPDATE OF issuedon

ON magazine

FOR EACH ROW

EXECUTE PROCEDURE

compute_download_path(‘http://bsdmag.org/download-demo/’);

Listing 10 shows the execution of the trigger when a new
magazine issue is inserted into the magazine table; it is
possible to see all the messages of the trigger and of the
notify _ readers plperl procedure that iterates over the
registered readers.

While the above described trigger could be an easy
way to implement an automatic notification system, it is
worth noting that notify_readers is not a “trigger-friendly”
procedure. This means that if the procedure requires

a long amount of time to complete its functionality, the
trigger (and consequently the transaction) will have to
wait for the procedure to complete. Moreover, if the
procedure fails, the trigger will make the transaction
to fail too. For this reason it is a better idea to untie
the notify_readers function from the trigger on the
magazine table and to execute it as a periodic or cron
script. In order to do this, it is required first to be able to
asynchronously identify issues for which no notifications
have been sent, and to avoid notifying readers multiple
times for the same issue. A simple and raw solution is
to place a dummy value, let’s say -1, into the notified_
readers column of the magazine table each time a new
row (that has the download_path) is added. The compute_
download_path trigger function changes a single row and is
associated this time as a “before” trigger to override the
default value of 0 associated over the notified_readers
column (it is also possible to drop such constraint), as
shown in Listing 11. Then a shell script must be built

Listing 10. Inserting new issue data and notifying the readers via a trigger

bsdmagdb=# INSERT INTO magazine(id, month, issuedon,

title)

values('2008-01',1,'01/01/2008'::text::date, 'A very old

issue');

LOG: Using a trigger-level path http://bsdmag.org/

download-demo/

LOG: Trigger tr_download_path executing for INSERT

event

LOG: Computed download for issue A very old issue path

is http://bsdmag.org/download-demo/

BSD_2008-01.pdf

LOG: Extracting the issue data via the query SELECT

title, download_path FROM magazine

WHERE pk = 4157355

CONTEXT: PL/Perl function "notify_readers"

SQL statement "SELECT notify_readers(NEW.pk)"

PL/pgSQL function "compute_download_path" line 36 at SQL

statement

LOG: Magazine Issue: A very old issue at

CONTEXT: PL/Perl function "notify_readers"

SQL statement "SELECT notify_readers(NEW.pk)"

PL/pgSQL function "compute_download_path" line 36 at SQL

statement

LOG: Extracting all readers via the query SELECT email,

name FROM readers

CONTEXT: PL/Perl function "notify_readers"

SQL statement "SELECT notify_readers(NEW.pk)"

PL/pgSQL function "compute_download_path" line 36 at SQL

statement

LOG: Found 2 readers

CONTEXT: PL/Perl function "notify_readers"

SQL statement "SELECT notify_readers(NEW.pk)"

PL/pgSQL function "compute_download_path" line 36 at SQL

statement

LOG: Notifying reader Luca Ferrari at email

lf@fakemail.com

CONTEXT: PL/Perl function "notify_readers"

SQL statement "SELECT notify_readers(NEW.pk)"

PL/pgSQL function "compute_download_path" line 36 at SQL

statement

LOG: Notifying reader Ritchie Root at email

rr@fakemail.com

CONTEXT: PL/Perl function "notify_readers"

SQL statement "SELECT notify_readers(NEW.pk)"

PL/pgSQL function "compute_download_path" line 36 at SQL

statement

LOG: Notified readers 2

INSERT 0 1

HOW TO

06/2012 32 www.bsdmag.org 33

PostgreSQL: Server-Side Programming (Part 2)

to connect to the backend and execute the notification
procedure over each tuple marked with a notified_readers
value of -1. To make things more portable, a wrapping
stored procedure is built (see Listing 12) to encapsulate
the execution logic of the notification. The procedure
notify_readers_new_issue (see Listing 12) iterates over
each magazine tuple not yet notified and executes the
notify_readers procedure. It is worth noting that, since a
dynamically built query must be executed and its result
is discarded, the execute statement is used.

Having defined the wrapping procedure, it does suffice
to create a simple shell script as follows and to launch it
via your favourite scheduler (cron, periodic, at, etc.):
#!/bin/sh

psql -U bsdmag -c „SET client_min_messages TO LOG; SELECT

notify_readers_new_issue(); „ bsdmagdb

Again, please note that the above implementation is not
a very complex one due to both space limitations and
didactic purposes; however it does suffice to illustrate
how easy is to implement even a complex and articulated
business logic directly into the PostgreSQL server side.

Inter-Process Communication: Listen/Notify
PostgreSQL embeds a simple pair of primitives for IPC:
listen and its opposite notify. The idea is that a process
can deliver an event with a specific content (payload) that
other processes can receive and consume. The developer
has to carefully choose the “channel” onto which delivering
events, since its name must be unique and must be used
on the counterpart listening processes.

Client applications can emit an event using the notify
primitive through the connection driver, but usually it is
better to embed the notification mechanism directly at

Listing 11. The modi�ed trigger function that places marks issues yet to be noti�ed

CREATE OR REPLACE FUNCTION compute_download_path()

RETURNS trigger AS

$BODY$

DECLARE

 default_path text;

BEGIN

 -- check if the trigger has a path as argument,

 -- otherwise use a default path

 IF TG_NARGS > 0 THEN

 -- first argument is the path

 default_path := TG_ARGV[0];

 RAISE LOG 'Using a trigger-level path %', default_

path;

 ELSE

 -- a default hard coded path

 default_path := 'http://bsdmag.org/download-demo/';

 END IF;

 -- print an info message

 RAISE LOG 'Trigger % executing for % event', TG_NAME,

TG_OP;

 -- if executing for a single column then compute the

path

 IF (TG_OP = 'UPDATE' OR TG_OP = 'INSERT') THEN

 NEW.notified_readers := -1;

 IF NEW.issuedon IS NOT NULL THEN

 NEW.download_path := default_path || 'BSD_' ||

NEW.id || '.pdf';

 RAISE LOG 'Computed download for issue % path is

%', NEW.title, NEW.download_path;

 ELSE

 RAISE LOG 'Removing the download path for issue

%', NEW.title;

 NEW.download_path := NULL;

 NEW.notified_readers := 0;

 END IF;

 -- suppose this is a row trigger

 RETURN NEW;

 END IF;

END;

$BODY$

LANGUAGE plpgsql VOLATILE;

CREATE TRIGGER tr_download_path

BEFORE INSERT OR UPDATE OF issuedon

ON magazine

EXECUTE PROCEDURE compute_download_path('http://

bsdmag.org/download-demo/');

HOW TO

06/2012 34 www.bsdmag.org 35

PostgreSQL: Server-Side Programming (Part 2)

Listing 12. A stored procedure that performs the call to the noti�cation procedure

CREATE OR REPLACE FUNCTION notify_readers_new_issue()

RETURNS void AS

$BODY$

DECLARE

 current_magazine magazine%rowtype;

BEGIN

 FOR current_magazine IN SELECT * FROM magazine

 WHERE notified_readers = -1

 LOOP

 RAISE LOG 'Notification for issue %', current_magazine.title;

 EXECUTE 'SELECT notify_readers(' || current_magazine.pk ||');';

 END LOOP;

END;

$BODY$

LANGUAGE plpgsql VOLATILE;

Listing 13. A simple event listener written in Perl

#!/usr/bin/env perl

use DBI;

my $database = "dbi:Pg:dbname=bsdmagdb";

my $username = 'bsdmag';

my $connection = DBI->connect($database, $username, '') || undef();

my $channel = "delete_channel";

print "\nListening on channel $channel\n";

$connection->do("LISTEN $channel");

for(my $i = 60; $i > 0; $i--){

 print "Waiting for still $i seconds...\n";

 sleep 1;

 # get the event back

 while(my $event = $connection->func("pg_notifies")){

 if(defined($event)) {

 my ($eventName, $pid, $payload) = @$event;

 print "Event <$eventName> received from process PID <$pid> with payload <$payload>\n";

 }

 }

}

HOW TO

06/2012 34 www.bsdmag.org 35

PostgreSQL: Server-Side Programming (Part 2)

the server-side, for instance within a rule. In this way the
event will always be emitted, even if the client application
crashes or has a problem. While the event notification is
almost standard across languages and applications, and

can be done either via the NOTIFY statement or the pg_
notify function, the event listening depends on the client
API used to connect to the database, even if PostgreSQL
provides the LISTEN statement.

Listing 14. A logger for „deletion” event coming out from PostgreSQL

#!/usr/bin/env perl

use DBI;

my $database = "dbi:Pg:dbname=bsdmagdb";

my $username = 'bsdmag';

my $connection = DBI->connect($database, $username, ''

) || undef();

my $channel = "delete_channel";

print "\nListening on channel $channel\n";

$connection->do("LISTEN $channel");

open($LOG_FILE, ">>", "/tmp/deletion.log") ||

croack("Cannot create log file\n$!\

n");

while(1){

 sleep 10;

 # get the event back

 while(my $event = $connection->func("pg_notifies")){

 if(defined($event)) {

 my ($eventName, $pid, $payload) = @$event;

 if(defined($payload) && $payload =~ /(.*)\

#(.*)\#/){

 # get the username and client ip address of

the notifier process

 $sql = "SELECT usename, client_addr,

client_hostname";

 $sql .= " FROM pg_stat_activity ";

 $sql .= " WHERE procpid = $pid; ";

 $resultset_arrayref = $connection-

>selectall_arrayref($sql);

 my $username = $resultset_arrayref->[0][0];

 my $ip = $resultset_arrayref->[0][1];

 my $hostname = $resultset_arrayref->[0][2];

 print $LOG_FILE "#### DELETION EVENT ####\n";

 print $LOG_FILE "Backend process $pid deleted

the magazine issue titled $2\n";

 print $LOG_FILE "\tUsername $username from

client $ip ($hostname)\n";

 }

 }

 }

}

close($LOG_FILE);

Box 1. plperl and pleperlu in the same
database
Depending on the Perl installation it is possible that the database
does not allow the usage of both pleperl and plperlu, claiming
that another Perl interpreter cannot be allocated. This is due to
security reasons: to avoid a privilege escalation from a plperlu
code to a plperl one, the two languages must run over two
different instances of Perl virtual machine. However, the virtual
machine process is launched from a backend process, so the
situation is that a single backend process must be able to launch
two different Perl interpreters. There are two solutions to the
problem: the �rst and simplest one is to drop the plperl language
support and install only the plperlu into the database. This means
that all your Perl code will run in untrusted mode, and can be a
security risk. The other solution, the better one, is to recompile
the Perl interpreter with the usemultiplicty �ag that allows Perl
to use different interpreters within the same process. In this way,

only the code that really need to be run in untrusted mode will
run in plperlu, while the other code can still run in trusted plperl.

Activating usemultiplicity in FreeBSD is simple and can be do-
ne at the con�guration step of the port lang/perl5.10 checking
the multiplicity checkbox. You can also ensure that the con�gura-
tion is �ne runing a showconfig:

make showconfig
===> The following configuration options are available

for perl-threaded-5.10.1_6:
 ...
 MULTIPLICITY=on „Use multiplicity”
 ...
===> Use ‘make config’ to modify these settings

Please note that could be required to remove the old Perl
installation via pkg_delete(1).

HOW TO

06/2012 36 www.bsdmag.org 37

In order to demonstrate the usage of the IPC primitives
consider this scenario: each time a new issue is going
to be deleted a notification will be sent to a client
application that will log the event in order to report it to
an administrator. The first step is to define a rule that
will perform the event notification along with the deletion
action:

CREATE OR REPLACE RULE r_delete_magazine

AS ON DELETE TO magazine

DO ALSO

NOTIFY delete_channel, ‘Deletion of a tuple’;

As readers can see, once a deletion will be performed,
also a notification over the delete _ channel event channel
will be sent: an event with the custom content (payload)
of “Deletion of a tuple” will be notified to listeners. It is
possible to test such notification mechanism even in the
psql terminal issuing a LISTEN statement for the chosen
channel delete _ channel:

bsdmagdb=# LISTEN delete_channel;

bsdmagdb=# DELETE FROM magazine WHERE id = ‘2007-01’;

Asynchronous notification „delete_channel” with payload

„Deletion of a tuple” received from server process with

PID 1357.

Before continuing to define the client application that will
handle and consume the above events, it is worth noting

that the event issued by the rule does not contain a lot
of information about the tuple that is going to be deleted.
Luckily PostgreSQL provides the function pg _ notify that
can be used when dealing with run-time build payload or
event channel naming, so that the rule can be changed
to the following:

CREATE OR REPLACE RULE r_delete_magazine

AS ON DELETE TO magazine

DO ALSO

SELECT pg_notify(‘delete_channel’, ‘Deletion of the tuple

titled: #’ || OLD.title || ‘#’);

so that the event will contain a more complete payload,
as shown in the following deletion example:

bsdmagdb=# DELETE FROM magazine WHERE id = ‘2007-01’;

Asynchronous notification „delete_channel” with payload

„Deletion of the tuple titled: #A very old issue#” received

from server process with PID 1357.

Now that the notification engine is in place, it is time to
write a simple client application that can consume the
incoming events; for this purposes a Perl script will be
used. Perl uses the module DBI::Pg (or BDI:PgPP) to
connect to a PostgreSQL database; the module can be
installed via the ports tree or the CPAN shell. First of
all let’s see a simple script that will report on standard
output each received event: Listing 13.

On The Web
• PostgreSQL official Web Site: http://www.postgresql.org
• ITPUG official Web Site: http://www.itpug.org
• PostrgeSQL plpgsql Documentation: http://www.postgresql.org/docs/current/static/plpgsql-statements.html
• PostgreSQL Rule System documentation: http://www.postgresql.org/docs/current/static/rules.html
• PostgreSQL Triggers Documentation: http://www.postgresql.org/docs/current/static/triggers.html
• GitHub Repository containing the source code of the examples: https://github.com/�uca1978/�uca-pg-utils

Box 2. The importance of the “pl” in PostgreSQL
languages
Having PostgreSQL to support a lot of different programming
languages is really useful and allows the reuse of a lot of code
and a lot of libraries. Moreover, having PostgreSQL to support
even object oriented languages such as Perl or Java makes it
even more attractive. However it is worth noting the presence

of that “pl” pre�x in front of each language: such “pl” stands
for “Procedural Language”. It essentially means that it does not
matter how smart a developer is writing excellent OOP Java
code, PostgreSQL will manage it as a procedural language. That
does not mean that OOP is forbidden, and developers can have
their own OOP libraries, but the entry point for PostgreSQL is
always a function.

Box 3. DBI::Pg and DBI::PgPP
Perl provides two main DBI implementation for PostgreSQL: Pg
and PgPP. The former is the �rst implementation made available
and requires libpq, the library for PostgreSQL C clients, to be

installed on the system. The latter is a pure Perl implementation
and does not require libpq to be installed, allowing the module
to directly handle and parse the networking messages from a to
a backend process.

http://www.postgresql.org
http://www.itpug.org
http://www.postgresql.org/docs/current/static/plpgsql-statements.html
http://www.postgresql.org/docs/current/static/rules.html
http://www.postgresql.org/docs/current/static/triggers.html
https://github.com/fluca1978/fluca-pg-utils

HOW TO

06/2012 36 www.bsdmag.org 37

The above script connects to the database and issues a
LISTEN for the specified event channel (delete_channel); after
that, the script calls the special DBI function pg_notifies
every second, which provides a single event out of the
listening channel, to print its information (payload, sender
process id and event name). Being able to process the
event information, including the payload, allows the script
to implement the desired logging; moreover the script can
also connect back to the database and query the pg_stat_
activity view to get information about which user did the
deletion. The whole logger implementation is reported in
Listing 14. Each time a deletion event is notified to the
client process, a log entry like the following is added to the
/tmp/deletion.log file:

DELETION EVENT

Backend process 3022 deleted the magazine issue titled

FreeBSD: Get Up To Date

 Username bsdmag from client 192.168.200.1 (flucabsd)

Of course, the logger shown in this example is really
simple and not meant to be solid-as-a-rock. Again, the
idea is to show what PostgreSQL can do and how easy
it can be to develop complex database applications
using server-side features. It is worth noting that the
PostgreSQL IPC has some limitations, most notably the
use of a text payload that makes difficult the manipulation
of non-text data. Moreover, the event queue can be filled
with unread messages, even if the queue can keep up to
8GB of events. Last but not least, the IPC is transaction-
boundary aware, and therefore a NOTIFY will be issued at
the commit of the running transaction.

As an exercise for the readers, it is possible to convert
the e-mail notification system using IPC so that each time
a new tuple is made available an event is notified to an
external mailer process that sends the e-mail.

Summary and Coming Next
This article completed the glance at the server-side
programming in PostgreSQL, with particular regard to the
use of foreign languages (Perl) and the IPC mechanism
implemented via listen/notify. In the next article the data
partitioning capabilities will be shown.

LUCA FERRARI
Luca Ferrari lives in Italy with his wife and son. He is an Adjunct
Professor at Nipissing University, Canada, a co-founder and the
vice-president of the Italian PostgreSQL Users’ Group (ITPUG).
He simply loves the Open Source culture and refuses to log-
in to non-Unix systems. He can be reached on line at http://
�uca1978.blogspot.com

http://fluca1978.blogspot.com
http://fluca1978.blogspot.com

DEVELOPER’S CORNER

06/2012 38 www.bsdmag.org 39

Synchronization Problems or: How I Learned to Stop Worrying and Love the Sleep Mutex

When two or more threads executing on different
processors simultaneously manipulate the same
data structure, that structure can be corrupted.

Fortunately, FreeBSD contains multiple solutions to
this problem. Before I describe these solutions, you’ll
require an in-depth understanding of the abovementioned
problem; formally known as a synchronization problem.

Listing 1 shows a function named race_new() that adds
a structure (at line 18) to a doubly linked list named
race_list. Every structure contains a unique unit number
(calculated at lines 07-11).

Listing 2 shows an ioctl routine named race_ioctl() that
calls race_new() (at line 10) to add a structure to race_list.

For completeness sake, Listing 3 shows the kernel
module that Listings 1 and 2 are from.

Listing 4 shows a command-line utility designed to
invoke race_ioctl() in order to add a structure to race_
list.

Synchronization
Problems or:
How I Learned to Stop Worrying and Love the
Sleep Mutex
This article addresses the problem of data and state corruption
caused by concurrent threads.

What you will learn…
• An in-depth understanding of synchronization problems
• The negative effects of synchronization problems
• One solution to synchronization problems (hint: I’m going to focus

on sleep mutexes)

What you should know…
• The C programming language
• Rudimentary FreeBSD kernel module programming
• If you lack the abovementioned prerequisites, you should still be able

to read this article (you just might not understand the code listings)

Listing 1. race_new() Function

01 static struct race_softc *

02 race_new(void)

03 {

04 struct race_softc *sc;

05 int unit, max = -1;

06

07 LIST_FOREACH(sc, &race_list, list) {

08 if (sc->unit > max)

09 max = sc->unit;

10 }

11 unit = max + 1;

12

13 sc = malloc(sizeof(struct race_softc),

M_RACE, M_NOWAIT | M_ZERO);

14 if (sc == NULL)

15 return (NULL);

16

17 sc->unit = unit;

18 LIST_INSERT_HEAD(&race_list, sc, list);

19

20 return (sc);

21 }

DEVELOPER’S CORNER

06/2012 38 www.bsdmag.org 39

Synchronization Problems or: How I Learned to Stop Worrying and Love the Sleep Mutex

Listing 2. race_ioctl() Function

01 static int

02 race_ioctl(struct cdev *dev, u_long cmd, caddr_t

data, int fflag,

03 struct thread *td)

04 {

05 struct race_softc *sc;

06 int error = 0;

07

08 switch (cmd) {

09 case RACE_IOC_ATTACH:

10 sc = race_new();

11 if (sc == NULL) {

12 error = ENOMEM;

13 break;

14 }

15 *(int *)data = sc->unit;

16 break;

17 default:

18 error = ENOTTY;

19 break;

20 }

21

22 return (error);

23 }

Listing 3a. race.c

#include <sys/param.h>

#include <sys/module.h>

#include <sys/kernel.h>

#include <sys/systm.h>

#include <sys/conf.h>

#include <sys/uio.h>

#include <sys/malloc.h>

#include <sys/ioccom.h>

#include <sys/queue.h>

#define RACE_NAME "race"

#define RACE_IOC_ATTACH _IOR('R', 0, int)

static MALLOC_DEFINE(M_RACE, RACE_NAME, "race object");

struct race_softc {

 LIST_ENTRY(race_softc) list;

 int unit;

};

static LIST_HEAD(, race_softc) race_list =

 LIST_HEAD_INITIALIZER(&race_list);

static struct race_softc * race_new(void);

static d_ioctl_t race_ioctl;

static struct cdevsw race_cdevsw = {

 .d_version = D_VERSION,

 .d_ioctl = race_ioctl,

 .d_name = RACE_NAME

};

static struct cdev *race_dev;

static int

race_ioctl(struct cdev *dev, u_long cmd, caddr_t data,

 int fflag, struct thread *td)

{

/* See Listing 2 for function definition. */

...

}

static struct race_softc *

race_new(void)

{

/* See Listing 1 for function definition. */

...

}

static int

race_modevent(module_t mod __unused, int event,

 void *arg __unused)

{

 int error = 0;

 switch (event) {

 case MOD_LOAD:

 race_dev = make_dev(&race_cdevsw, 0,

 UID_ROOT, GID_WHEEL, 0600,

 RACE_NAME);

 uprintf("Race driver loaded.\n");

 break;

 case MOD_UNLOAD:

 destroy_dev(race_dev);

 uprintf("Race driver unloaded.\n");

 break;

 default:

 error = EOPNOTSUPP;

 break;

DEVELOPER’S CORNER

06/2012 40

Listing 3b. race.c

 }

 return (error);

}

DEV_MODULE(race, race_modevent, NULL);

Listing 4. race_con�g.c

#include <sys/types.h>

#include <sys/ioctl.h>

#include <err.h>

#include <fcntl.h>

#include <limits.h>

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#define RACE_NAME "race"

#define RACE_IOC_ATTACH _IOR('R', 0, int)

static enum {UNSET, ATTACH} action = UNSET;

/*

 * The usage statement: race_config -a

 */

static void

usage()

{

 fprintf(stderr, "usage: race_config -a\n");

 exit(1);

}

/*

 * This program manages the doubly linked list found in

 * /dev/race. It allows you to add an item to the list.

 */

int

main(int argc, char *argv[])

{

 int ch, fd, i, unit;

 /*

 * Parse the command line argument list to

 * determine the correct course of action.

 *

 * -a: add an item.

 */

 while ((ch = getopt(argc, argv, "a")) != -1)

 switch (ch) {

 case 'a':

 if (action != UNSET)

 usage();

 action = ATTACH;

 break;

 default:

 usage();

 }

 /*

 * Perform the chosen action.

 */

 if (action == ATTACH) {

 fd = open("/dev/" RACE_NAME, O_RDWR);

 if (fd < 0)

 err(1, "open(/dev/%s)",

 RACE_NAME);

 i = ioctl(fd, RACE_IOC_ATTACH, &unit);

 if (i < 0)

 err(1, "ioctl(/dev/%s)",

 RACE_NAME);

 printf("unit: %d\n", unit);

 close (fd);

 } else

 usage();

 return (0);

}

www.bsdmag.org 41

Synchronization Problems or: How I Learned to Stop Worrying and Love the Sleep Mutex

Listing 5a. race_mtx.c

001 #include <sys/param.h>

002 #include <sys/module.h>

003 #include <sys/kernel.h>

004 #include <sys/systm.h>

005

006 #include <sys/conf.h>

007 #include <sys/uio.h>

008 #include <sys/malloc.h>

009 #include <sys/ioccom.h>

010 #include <sys/queue.h>

011 #include <sys/lock.h>

012 #include <sys/mutex.h>

013

014 #define RACE_NAME "race"

015 #define RACE_IOC_ATTACH _IOR('R', 0, int)

016

017 static MALLOC_DEFINE(M_RACE, RACE_NAME, "race

object");

018

019 struct race_softc {

020 LIST_ENTRY(race_softc) list;

021 int unit;

022 };

023

024 static LIST_HEAD(, race_softc) race_list =

025 LIST_HEAD_INITIALIZER(&race_list);

026

027 static struct mtx race_mtx;

028

029 static struct race_softc * race_new(void);

030 static d_ioctl_t race_ioctl_mtx;

031 static d_ioctl_t race_ioctl;

032

033 static struct cdevsw race_cdevsw = {

034 .d_version = D_VERSION,

035 .d_ioctl = race_ioctl_mtx,

036 .d_name = RACE_NAME

037 };

038

039 static struct cdev *race_dev;

040

041 static int

042 race_ioctl_mtx(struct cdev *dev, u_long cmd, caddr_t

data, int fflag,

043 struct thread *td)

044 {

045 int error;

046

047 mtx_lock(&race_mtx);

048 error = race_ioctl(dev, cmd, data, fflag,

td);

049 mtx_unlock(&race_mtx);

050

051 return (error);

052 }

053

054 static int

055 race_ioctl(struct cdev *dev, u_long cmd, caddr_t

data, int fflag,

056 struct thread *td)

057 {

058 /* See Listing 2 for function definition. */

059 ...

060 }

061

062 static struct race_softc *

063 race_new(void)

064 {

065 /* See Listing 1 for function definition. */

066 ...

067 }

068

069 static int

070 race_modevent(module_t mod __unused, int event, void

*arg __unused)

071 {

072 int error = 0;

073 struct race_softc *sc, *sc_temp;

074

075 switch (event) {

076 case MOD_LOAD:

077 mtx_init(&race_mtx, "race config

lock", NULL, MTX_DEF);

078 race_dev = make_dev(&race_cdevsw, 0,

UID_ROOT, GID_WHEEL,

079 0600, RACE_NAME);

080 uprintf("Race driver loaded.\n");

081 break;

082 case MOD_UNLOAD:

083 destroy_dev(race_dev);

084 mtx_lock(&race_mtx);

085 if (!LIST_EMPTY(&race_list)) {

086 LIST_FOREACH_SAFE(sc, &race_

list, list, sc_temp)

087 {

088 LIST_REMOVE(sc, list);

DEVELOPER’S CORNER

06/2012 42

If two threads execute Listing 4 simultaneously, this
might occur:

$ sudo kldload ./race.ko

Password:

Race driver loaded.

$ cd ../race_config/

$ sudo ./race_config -a & sudo ./race_config -a &

[1] 1128

[2] 1129

$ unit: 0

unit: 0

As you can see, two structures ended up with the same
“unique” unit number. Naturally, this is undesirable and
should not occur. So what happened? Well, both threads
checked race _ list simultaneously, discovered that it
was empty, and assigned 0 as the unit number. In other
words, due to a particular sequence of events, an error
occurred. This error is known as a race condition.

Preventing Race Conditions
Race conditions are prevented using locks. Locks,
also known as synchronization primitives, are used
to serialize the execution of two or more threads. For
example, the abovementioned race condition is caused
by concurrent access to race_list and can be prevented
by using a lock to serialize access to race_list. Before a
thread can access race_list, it must first acquire the foo

lock. Only one thread can hold foo at a time. If a thread
cannot acquire foo, it cannot access race_list and must
wait for the current owner to relinquish foo. This protocol
guarantees that at any moment in time only one thread
can access race_list.

In FreeBSD there are numerous types of locks. The
most commonly used lock is the sleep mutex (mutex
is a portmanteau of mutual and exclusion). If a thread
attempts to acquire a sleep mutex that is being held by
another thread, it will context switch (that is, sleep) and
wait for the sleep mutex to be released. Incidentally, the
foo lock described previously is a sleep mutex.

Listing 5 shows how a sleep mutex can prevent the
aforementioned race condition. It works by serializing
the execution of race_ioctl(), which is the main source
of concurrent access to race_list. A new function named
race_ioctl_mtx() is defined as the ioctl routine (shown at
line 35). This function begins by acquiring a sleep mutex
(at line 47). Next, race_ioctl() is called (at line 48) and
after it returns the sleep mutex is released (at line 49).

As you can see, it takes just one lock to serialize the
execution of race_ioctl(). Essentially, this is what all locks
do. They prevent multiple threads from simultaneously
manipulating one or more objects.

Closing Words
If you take just one thing away from this article, it should
be this: Whenever an object can be accessed by multiple
threads, you must manage that access.

As an aside, one characteristic of race conditions is
that they’re hard to reproduce. Thus, the race condition
was doctored in this article. That is, I caused the threads
to context switch at key points in order to achieve the
desired outcome. Under normal conditions, it would have
taken me literally millions of attempts before that race
condition would occur, and I didn’t want to spend my time
doing that.

Listing 5b. race_mtx.c

089 free(sc, M_RACE);

090 }

091 }

092 mtx_unlock(&race_mtx);

093 mtx_destroy(&race_mtx);

094 uprintf("Race driver unloaded.\

n");

095 break;

096 default:

097 error = EOPNOTSUPP;

098 break;

099 }

100

101 return (error);

102 }

103

104 DEV_MODULE(race, race_modevent, NULL);

JOSEPH KONG
The author of Designing BSD Rootkits (No Starch Press) and
FreeBSD Device Drivers (No Starch Press), Joseph Kong dabbles
in operating system design, reverse code engineering, and
computer (in)security.

http://www.bsdmall.com/

ZFS

06/2012 44 www.bsdmag.org

Same as year ago, I assume that you would want
to create fresh installation of FreeBSD using one
or more hard disks, but also with (laptops) and

without GELI based full disk encryption.
This guide was written when FreeBSD 9.0 and 8.3 were

available and definitely works for 9.0, but I did not try all
this on the older 8.3, if you find some issues on 8.3, let me
know I will try to address them in this guide.

Earlier, I was not that confident about booting from the
ZFS pool, but there is some very neat feature that made
me think ZFS boot is now mandatory. If you just smiled,
you know that I am thinking about Boot Environments
feature from Illumos/Solaris systems.

In case you are not familiar with the Boot Environments
feature, check the Managing Boot Environments with
Solaris 11 Express PDF white paper [3]. Illumos/Solaris
has the beadm(1M) [4] utility and while Philipp Wuensche
wrote the manageBE script as replacement [5], it uses
older style used at times when OpenSolaris (and SUN)
were still having a great time.

I spent last couple of days writing an up-to-date
replacement for FreeBSD compatible beadm utility (Listing
1.), and with some tweaks from today I just made it
available at SourceForge [6] or GitHub [7] if you wish
to test it. Currently its about 200 lines long, so it should
be pretty simple to take a look at it. I tried to make it as
compatible as possible with the ‘upstream’ version, along

with some small improvements, it currently supports basic
functions like list, create, destroy, activate and rename.

There are several subtle differences between mine
implementation and Philipp’s one, he defines and then
relies upon ZFS property called freebsd:boot-environment=1
for each boot environment, I do not set any other additional
ZFS properties. There is already org.freebsd:swap property
used for SWAP on FreeBSD, so we may use org.freebsd:
be in the future, but is just a thought, right now its not used.

ZFS Madness with
BEADM
Some time ago I found a good, reliable way of using and installing
FreeBSD and described it in my Modern FreeBSD Install [1]
[2] HOWTO. Now, more then a year later I come back with my
experiences about that setup and a proposal of newer and a lot
better way of doing it.

What you will learn…
• How to install FreeBSD in the most useful way.
• How to implement and use Boot Environments with beadm utility.
• The internals of the FreeBSD install process.
• How to make basic FreeBSD con�guration after installation process.

What you should know…
• Knowledge about ZFS concepts would be useful.

Listing 1. beadm usage

beadm

usage:

 beadm subcommand cmd_options

 subcommands:

 beadm activate beName

 beadm create [-e nonActiveBe | beName@snapshot] beName

 beadm create beName@snapshot

 beadm destroy beName

 beadm destroy beName@snapshot

 beadm list

 beadm rename origBeName newBeName

ZFS

06/2012 44 www.bsdmag.org

My version also supports activating boot environments
received with zfs recv command from other systems (it
just updates appreciate /boot/zfs/zpool.cache file).

My implementation is also style compatible with current
Illumos/Solaris beadm(1M) which is like the example below
(Listing 2).

The boot environments are located in the same please
as in Illumos/Solaris, at pool/ROOT/environment place.

Now you’re Thinking with Portals [*]
[*] Reference to the Portal computer game from Valve.
The main purpose of the Boot Environments concept
is to make all risky tasks harmless, to provide an easy
way back from possible troubles. Think about upgrading
the system to newer version, an update of 30+ installed
packages to latest versions, testing software or various
solutions before taking the final decision, and much more.
All these tasks are now harmless thanks to the Boot
Environments, but this is just the tip of the iceberg.

You can now move desired boot environment to other
machine, physical or virtual and check how it will behave
there, check hardware support on the other hardware for

Listing 2. beadm command in action

beadm create -e default upgrade-test

Created successfully

beadm list

BE Active Mountpoint Space Policy Created

default N / 1.06M static 2012-02-03 15:08

upgrade-test R - 560M static 2012-04-24 22:22

new - - 8K static 2012-04-24 23:40

zfs list -r sys/ROOT

NAME USED AVAIL REFER MOUNTPOINT

sys/ROOT 562M 8.15G 144K none

sys/ROOT/default 1.48M 8.15G 558M legacy

sys/ROOT/new 8K 8.15G 558M none

sys/ROOT/upgrade-test 560M 8.15G 558M none

beadm activate default

Activated successfully

beadm list

BE Active Mountpoint Space Policy Created

default NR / 1.06M static 2012-02-03 15:08

upgrade-test - - 560M static 2012-04-24 22:22

new - - 8K static 2012-04-24 23:40

ZFS

06/2012 46

example or make a painless hardware upgrade. You may
also clone your desired boot environment and ... start it
as a Jail for some more experiments or move your old
physical server install into FreeBSD Jail because its not
that heavily used anymore but it still have to be available.

Other good example may be just created server on your
laptop inside VirtualBox virtual machine. After you finish
the creation process and tests, you may move this boot
environment to the real server and put it into production.
Or even move it into VMware ESX/vSphere virtual

machine and use it there. As you see the possibilities with
Boot Environments are unlimited.

The Install Process
I created 3 possible schemes which should cover most
demands, choose one and continue to the next step.

Server with Two Disks
I assume that this server has 2 disks and we will create
ZFS mirror across them, so if any of them will be gone the

Listing 3. Server with Two Disks install process

1. Boot from the FreeBSD USB/DVD.

2. Select the 'Live CD' option.

3. login: root

4. # sh

5. # DISKS="ada0 ada1"

6. # for I in ${DISKS}; do

> NUMBER=$(echo ${I} | tr -c -d '0-9')

> gpart create -s GPT ${I}

> gpart add -t freebsd-boot -l bootcode${NUMBER} -s

128k ${I}

> gpart add -t freebsd-zfs -l sys${NUMBER} ${I}

> gpart bootcode -b /boot/pmbr -p /boot/gptzfsboot -i

1 ${I}

> done

7. # zpool create -f -o cachefile=/tmp/zpool.cache sys

mirror /dev/gpt/sys*

8. # zfs set mountpoint=none sys

9. # zfs set checksum=fletcher4 sys

10. # zfs set atime=off sys

11. # zfs create sys/ROOT

12. # zfs create -o mountpoint=/mnt sys/ROOT/default

13. # zpool set bootfs=sys/ROOT/default sys

14. # cd /usr/freebsd-dist/

15. # for I in base.txz kernel.txz; do

> tar --unlink -xvpJf ${I} -C /mnt

> done

16.# cp /tmp/zpool.cache /mnt/boot/zfs/

17.# cat << EOF >> /mnt/boot/loader.conf

> zfs_load=YES

> vfs.root.mountfrom="zfs:sys/ROOT/default"

> EOF

18.# cat << EOF >> /mnt/etc/rc.conf

> zfs_enable=YES

> EOF

19.# :> /mnt/etc/fstab

20.# zfs umount -a

21.# zfs set mountpoint=legacy sys/ROOT/default

22.# reboot

Listing 4. Disk layout after Server with Two Disks install process

gpart show

=> 34 1048509 ada0 GPT (512M)

 34 256 1 freebsd-boot (128k)

 290 1048253 2 freebsd-zfs (511M)

=> 34 1048509 ada1 GPT (512M)

 34 256 1 freebsd-boot (128k)

 290 1048253 2 freebsd-zfs (511M)

gpart list | grep label

 label: bootcode0

 label: sys0

 label: bootcode1

 label: sys1

zpool status

 pool: sys

 state: ONLINE

 scan: none requested

config:

 NAME STATE READ WRITE CKSUM

 sys ONLINE 0 0 0

 mirror-0 ONLINE 0 0 0

 gpt/sys0 ONLINE 0 0 0

 gpt/sys1 ONLINE 0 0 0

errors: No known data errors

www.bsdmag.org 47

ZFS Madness with BEADM

system will still work as usual. I also assume that these
disks are ada0 and ada1. If you have SCSI/SAS drives
there, they may be named da0 and da1 accordingly. The
procedures below (Listing 3) will wipe all data on these
disks, you have been warned.After these instructions
and reboot we have these GPT partitions available, this
example is on a 512MB disk (Listing 4).

Server with One Disk
If your server configuration has only one disk, lets assume
its ada0, then you need different points 5. and 7. to make,
use these instead of the ones above.

5. # DISKS=”ada0”

7. # zpool create -f -o cachefile=/tmp/zpool.cache sys

/dev/gpt/sys*

All other steps are the same.

Road Warrior Laptop
The procedure is quite different for Laptop because we will
use the full disk encryption mechanism provided by GELI
and then setup the ZFS pool. Its not currently possible
to boot off from the ZFS pool on top of encrypted GELI
provider, so we will use setup similar to the Server with
... one but with additional local pool for /home and /root
partitions. It will be password based and you will be asked
to type-in that password at every boot. The install process
is generally the same with new instructions added for the
GELI encrypted local pool, I put them with different color to
make the difference more visible. After these instructions
and reboot we have these GPT partitions available, this
example is on a 4GB disk (Listing 6).

Basic Setup after Install

• Login as root with empty password.
 login: root

 password: [ENTER]

• Create initial snapshot after install. # zfs snapshot -r

sys/ROOT/default@install
• Set new root password. # passwd
• Set machine’s hostname. # echo hostname=hostname.domain

.com >> /etc/rc.conf
• Set proper timezone. # tzsetup
• Add some swap space.
 If you used the Server with ... type, then use this to

add swap.
 # zfs create -V 1G -o org.freebsd:swap=on \

 -o checksum=off \

 -o sync=disabled \

 -o primarycache=none \

 -o secondarycache=none sys/swap

 # swapon /dev/zvol/sys/swap

 If you used the Road Warrior Laptop one, then use
this one below, this way the swap space will also be
encrypted.

 # zfs create -V 1G -o org.freebsd:swap=on \

 -o checksum=off \

 -o sync=disabled \

 -o primarycache=none \

 -o secondarycache=none local/swap

 # swapon /dev/zvol/local/swap

• Create snapshot called configured or production

After you configured your fresh FreeBSD system, added
needed packages and services, create snapshot called
configured or production so if you mess something, you can
always go back in time to bring working configuration back.

zfs snapshot -r sys/ROOT/default@configured

Enable Boot Environments
Here are some simple instructions on how to download
and enable the beadm command line utility for easy Boot
Environments administration.

fetch -o /usr/sbin/beadm https://downloads.sourceforge.n

et/project/beadm/beadm

chmod +x /usr/sbin/beadm

rehash

beadm list

BE Active Mountpoint Space Policy Created

default NR / 592M static 2012-04-25 02:03

Possible Usage Patters
Now we have a working ZFS only FreeBSD system, I
will put some example here about what you now can
do with this type of installation and of course the Boot
Environments feature.

Create New Boot Environment Before Upgrade

• Create new environment from the current one. # beadm
create upgrade

• Activate it. # beadm activate upgrade
• Reboot into it. # shutdown -r now
• Mess with it.

You are now free to do anything you like for or the
upgrade process, but even if you break everything, you
still have a working default working environment.

ZFS

06/2012 48 www.bsdmag.org 49

ZFS Madness with BEADM

Listing 5. Road Warrior Laptop install process

1. Boot from the FreeBSD USB/DVD.

2. Select the 'Live CD' option.

3. login: root

4. # sh

5. # DISKS="ada0"

6. # for I in ${DISKS}; do

> NUMBER=$(echo ${I} | tr -c -d '0-9')

> gpart destroy -F ${I}

> gpart create -s GPT ${I}

> gpart add -t freebsd-boot -l bootcode${NUMBER} -s

128k ${I}

> gpart add -t freebsd-zfs -l sys${NUMBER} -s 10G ${I}

> gpart add -t freebsd-zfs -l local${NUMBER} ${I}

> gpart bootcode -b /boot/pmbr -p /boot/gptzfsboot -i

1 ${I}

> done

7. # zpool create -f -o cachefile=/tmp/zpool.cache sys

/dev/gpt/sys0

8. # zfs set mountpoint=none sys

9. # zfs set checksum=fletcher4 sys

10. # zfs set atime=off sys

11. # zfs create sys/ROOT

12. # zfs create -o mountpoint=/mnt sys/ROOT/default

13. # zpool set bootfs=sys/ROOT/default sys

14. # geli init -b -s 4096 -e AES-CBC -l 128 /dev/gpt/

local0

15. # geli attach /dev/gpt/local0

16. # zpool create -f -o cachefile=/tmp/zpool.cache

local /dev/gpt/local0.eli

17. # zfs set mountpoint=none local

18. # zfs set checksum=fletcher4 local

19. # zfs set atime=off local

20. # zfs create local/home

21.# zfs create -o mountpoint=/mnt/root local/root

22.# cd /usr/freebsd-dist/

23.# for I in base.txz kernel.txz; do

> tar --unlink -xvpJf ${I} -C /mnt

> done

24.# cp /tmp/zpool.cache /mnt/boot/zfs/

25.# cat << EOF >> /mnt/boot/loader.conf

> zfs_load=YES

> geom_eli_load=YES

> vfs.root.mountfrom="zfs:sys/ROOT/default"

> EOF

26.# cat << EOF >> /mnt/etc/rc.conf

> zfs_enable=YES

27.# :> /mnt/etc/fstab

28.# zfs umount -a

29. # zfs set mountpoint=legacy sys/ROOT/default

30.# zfs set mountpoint=/home local/home

31.# zfs set mountpoint=/root local/root

32.# reboot

Listing 6. Disk layout after Road Warrior Laptop install process

gpart show

=> 34 8388541 ada0 GPT (4.0G)

 34 256 1 freebsd-boot (128k)

 290 2097152 2 freebsd-zfs (1.0G)

 2097442 6291133 3 freebsd-zfs (3G)

gpart list | grep label

 label: bootcode0

 label: sys0

 label: local0

zpool status

 pool: local

 state: ONLINE

 scan: none requested

config:

 NAME STATE READ WRITE CKSUM

 sys ONLINE 0 0 0

 gpt/local0.eli ONLINE 0 0 0

errors: No known data errors

 pool: sys

 state: ONLINE

 scan: none requested

config:

 NAME STATE READ WRITE CKSUM

 sys ONLINE 0 0 0

 gpt/sys0 ONLINE 0 0 0

errors: No known data errors

ZFS

06/2012 48 www.bsdmag.org 49

ZFS Madness with BEADM

Perform Upgrade within a Jail
This concept is about creating new boot environment
from the desired one, lets call it jailed, then start that new
environment inside a FreeBSD Jail and perform upgrade
there.

After you have finished all tasks related to this upgrade
and you are satisfied with the achieved results, shutdown
that Jail, set the boot environment into that just upgraded
Jail called jailed and reboot into just upgraded system
without any risks.

• Create new boot environment called jailed.
 # beadm create -e default jailed

 Created successfully

• Create /usr/jails directory. # mkdir /usr/jails
• Set mount point of new boot environment to /usr/

jails/jailed dir. # zfs set mountpoint=/usr/jails/jailed

sys/ROOT/jailed
• Enable FreeBSD Jails mechanism and the jailed Jail

in /etc/rc.conf file. # cat << EOF >> /etc/rc.conf
 > jail_enable=YES

 > jail_list=”jailed”

 > jail_jailed_rootdir=”/usr/jails/jailed”

 > jail_jailed_hostname=”jailed”

 > jail_jailed_ip=”10.20.30.40”

 > jail_jailed_devfs_enable=”YES”

 > EOF

• Start the Jails mechanism.
 # /etc/rc.d/jail start

 Configuring jails:.

 Starting jails: jailed.

• Check if the jailed Jail started.
 # jls

 JID IP Address Hostname Path

 1 10.20.30.40 jailed /usr/jails/jailed

• Login into the jailed Jail. # jexec 1 tcsh
• PERFORM ACTUAL UPGRADE.
• Stop the jailed Jail.
 # /etc/rc.d/jail stop

 Stopping jails: jailed.

SŁAWOMIR WOJCIECH WOJTCZAK VERMADEN
Vermaden is another busy sysadmin with interest towards UNIX
and BSD systems, often forced to also work with Linux. KISS
principle follower.

References
[1] http://forums.freebsd.org/showthread.php?t=10334
[2] http://forums.freebsd.org/showthread.php?t=12082
[3] http://docs.oracle.com/cd/E19963-01/pdf/820-6565.pdf
[4] http://docs.oracle.com/cd/E19963-01/html/821-1462/beadm-

1m.html
[5] http://anonsvn.h3q.com/projects/freebsd-patches/wiki/

manageBE
[6] https://sourceforge.net/projects/beadm/
[7] https://github/vermaden/beadm/

• Disable Jails mechanism in /etc/rc.conf file. # sed -i ‘’
-E s/”^jail _ enable.*$”/”jail _ enable=NO”/g /etc/rc.conf

• Activate just upgraded jailed boot environment.
 # bootfs-beadm activate jailed

 Activated successfully

• Restart the system into upgraded system. # shutdown -
r now

Import Boot Environment from Other Machine
Lets assume, that you need to upgrade or do some major
modification to some of your servers, you will then create
new boot environment from the default one, move it to
other ‘free’ machine, perform these tasks there and after
everything is done, move the modified boot environment
to the production without any risks. You may as well
transport that environment into You laptop/workstation
and upgrade it in a Jail like in step 6.2 of this guide.

• Create new environment on the production server.
 # beadm create upgrade

 Created successfully.

• Send the upgrade environment to test server. # zfs

send sys/ROOT/upgrade | ssh TEST zfs recv -u sys/ROOT/

upgrade
• Activate the upgrade environment on the test server.
 # beadm activate upgrade

 Activated successfully.

• Reboot into the upgrade environment on the test
server. # shutdown -r now

• PERFORM ACTUAL UPGRADE AFTER REBOOT.
• Sent the upgraded upgrade environment onto

production server. # zfs send sys/ROOT/upgrade | ssh

PRODUCTION zfs recv -u sys/ROOT/upgrade
• Activate upgraded upgrade environment on the

production server.
 # beadm activate upgrade

 Activated successfully.

• Reboot into the upgrade environment on the production
server. # shutdown -r now

The last part of the HOWTO remains the same as Year
ago ...

You can now add your users, services and packages as
usual on any FreeBSD system, have fun ;)

http://forums.freebsd.org/showthread.php?t=10334
http://forums.freebsd.org/showthread.php?t=12082
http://docs.oracle.com/cd/E19963-01/pdf/820-6565.pdf
http://docs.oracle.com/cd/E19963-01/html/821-1462/beadm-1m.html
http://docs.oracle.com/cd/E19963-01/html/821-1462/beadm-1m.html
http://anonsvn.h3q.com/projects/freebsd-patches/wiki/manageBE
http://anonsvn.h3q.com/projects/freebsd-patches/wiki/manageBE
https://sourceforge.net/projects/beadm/
https://github/vermaden/beadm/

http://www.redsphereglobal.com/

http://www.buildasearch.com/

�������������������������������������
��������������������������

���

���

��

����������������
����������������������������������

������������������������������������
��������������������������������

http://www.ixsystems.com/community

	Cover
	Dear Readers
	Contents
	DNSSEC: Threats to DNS Transactions Part 2
	Anatomy of a FreeBSD Compromise Part 6
	Using Qjail to set up the basejail
	PostgreSQL: Server-Side Programming Part 2
	ZFS Madness with BEADM

