

FREENAS MINI
STORAGE APPLIANCE

IT SAVES YOUR LIFE.

How important is your data?

Years of family photos. Your entire music
and movie collection. Office documents
you’ve put hours of work into. Backups for
every computer you own. We ask again, how
important is your data?

now imaGinE LosinG it aLL

Losing one bit - that’s all it takes. One single bit, and
your file is gone.

The worst part? You won’t know until you
absolutely need that file again.

tHE soLution

The FreeNAS Mini has emerged as the clear choice to
save your digital life. No other NAS in its class offers
ECC (error correcting code) memory and ZFS bitrot
protection to ensure data always reaches disk
without corruption and never degrades over time.

No other NAS combines the inherent data integrity
and security of the ZFS filesystem with fast on-disk
encryption. No other NAS provides comparable power
and flexibility. The FreeNAS Mini is, hands-down, the
best home and small office storage appliance you can
buy on the market. When it comes to saving your
important data, there simply is no other solution.

Example of one-bit corruption

the mini boasts these state-of-the-
art features:

8-core 2.4GHz Intel® Atom™ processor •	
Up to 16TB of storage capacity•	
16GB of ECC memory (with the option to upgrade •	
to 32GB)
2 x 1 Gigabit network controllers•	
Remote management port (IPMI)•	
Tool-less design; hot swappable drive trays•	
FreeNAS installed and configured•	

with over six million downloads,
Freenas is undisputedly the most
popular storage operating system
in the world.

Sure, you could build your own FreeNAS system:
research every hardware option, order all the
parts, wait for everything to ship and arrive, vent at
customer service because it hasn’t, and finally build it
yourself while hoping everything fits - only to install
the software and discover that the system you spent
days agonizing over isn’t even compatible. Or...

makE it Easy on yoursELF

As the sponsors and lead developers of the FreeNAS
project, iXsystems has combined over 20 years of
hardware experience with our FreeNAS expertise to
bring you FreeNAS Certified Storage. We make it
easy to enjoy all the benefits of FreeNAS without
the headache of building, setting up, configuring,
and supporting it yourself. As one of the leaders in
the storage industry, you know that you’re getting the
best combination of hardware designed for optimal
performance with FreeNAS.

Every Freenas server we ship is...

Custom built and optimized for your use case »
Installed, configured, tested, and guaranteed to work out »
of the box
Supported by the Silicon Valley team that designed and »
built it
Backed by a 3 years parts and labor limited warranty »

As one of the leaders in the storage industry, you
know that you’re getting the best combination
of hardware designed for optimal performance
with FreeNAS. Contact us today for a FREE Risk
Elimination Consultation with one of our FreeNAS
experts. Remember, every purchase directly supports
the FreeNAS project so we can continue adding
features and improvements to the software for years
to come. And really - why would you buy a FreeNAS
server from anyone else?

 Freenas 1u
Intel® Xeon® Processor E3-1200v2 Family •	
Up to 16TB of storage capacity•	
16GB ECC memory (upgradable to 32GB)•	
2 x 10/100/1000 Gigabit Ethernet controllers•	
Redundant power supply•	

Freenas 2u
2x Intel® Xeon® Processors E5-2600v2 Family •	
Up to 48TB of storage capacity•	
32GB ECC memory (upgradable to 128GB) •	
4 x 1GbE Network interface (Onboard) - •	
(Upgradable to 2 x 10 Gigabit Interface)
Redundant Power Supply•	

Intel, the Intel logo, the Intel Inside logo and Xeon are trademarks of Intel Corporation in the U.S. and/or other countries.Intel, the Intel logo, Intel Atom and Intel Atom Inside are trademarks of Intel Corporation in the U.S. and/or other countries.

FREENAS
CERTIFIED
STORAGE

http://www.iXsystems.com/mini http://www.iXsystems.com/storage/freenas-certified-storage/

http://www.iXsystems.com/mini

FREENAS MINI
STORAGE APPLIANCE

IT SAVES YOUR LIFE.

How important is your data?

Years of family photos. Your entire music
and movie collection. Office documents
you’ve put hours of work into. Backups for
every computer you own. We ask again, how
important is your data?

now imaGinE LosinG it aLL

Losing one bit - that’s all it takes. One single bit, and
your file is gone.

The worst part? You won’t know until you
absolutely need that file again.

tHE soLution

The FreeNAS Mini has emerged as the clear choice to
save your digital life. No other NAS in its class offers
ECC (error correcting code) memory and ZFS bitrot
protection to ensure data always reaches disk
without corruption and never degrades over time.

No other NAS combines the inherent data integrity
and security of the ZFS filesystem with fast on-disk
encryption. No other NAS provides comparable power
and flexibility. The FreeNAS Mini is, hands-down, the
best home and small office storage appliance you can
buy on the market. When it comes to saving your
important data, there simply is no other solution.

Example of one-bit corruption

the mini boasts these state-of-the-
art features:

8-core 2.4GHz Intel® Atom™ processor •	
Up to 16TB of storage capacity•	
16GB of ECC memory (with the option to upgrade •	
to 32GB)
2 x 1 Gigabit network controllers•	
Remote management port (IPMI)•	
Tool-less design; hot swappable drive trays•	
FreeNAS installed and configured•	

with over six million downloads,
Freenas is undisputedly the most
popular storage operating system
in the world.

Sure, you could build your own FreeNAS system:
research every hardware option, order all the
parts, wait for everything to ship and arrive, vent at
customer service because it hasn’t, and finally build it
yourself while hoping everything fits - only to install
the software and discover that the system you spent
days agonizing over isn’t even compatible. Or...

makE it Easy on yoursELF

As the sponsors and lead developers of the FreeNAS
project, iXsystems has combined over 20 years of
hardware experience with our FreeNAS expertise to
bring you FreeNAS Certified Storage. We make it
easy to enjoy all the benefits of FreeNAS without
the headache of building, setting up, configuring,
and supporting it yourself. As one of the leaders in
the storage industry, you know that you’re getting the
best combination of hardware designed for optimal
performance with FreeNAS.

Every Freenas server we ship is...

Custom built and optimized for your use case »
Installed, configured, tested, and guaranteed to work out »
of the box
Supported by the Silicon Valley team that designed and »
built it
Backed by a 3 years parts and labor limited warranty »

As one of the leaders in the storage industry, you
know that you’re getting the best combination
of hardware designed for optimal performance
with FreeNAS. Contact us today for a FREE Risk
Elimination Consultation with one of our FreeNAS
experts. Remember, every purchase directly supports
the FreeNAS project so we can continue adding
features and improvements to the software for years
to come. And really - why would you buy a FreeNAS
server from anyone else?

 Freenas 1u
Intel® Xeon® Processor E3-1200v2 Family •	
Up to 16TB of storage capacity•	
16GB ECC memory (upgradable to 32GB)•	
2 x 10/100/1000 Gigabit Ethernet controllers•	
Redundant power supply•	

Freenas 2u
2x Intel® Xeon® Processors E5-2600v2 Family •	
Up to 48TB of storage capacity•	
32GB ECC memory (upgradable to 128GB) •	
4 x 1GbE Network interface (Onboard) - •	
(Upgradable to 2 x 10 Gigabit Interface)
Redundant Power Supply•	

Intel, the Intel logo, the Intel Inside logo and Xeon are trademarks of Intel Corporation in the U.S. and/or other countries.Intel, the Intel logo, Intel Atom and Intel Atom Inside are trademarks of Intel Corporation in the U.S. and/or other countries.

FREENAS
CERTIFIED
STORAGE

http://www.iXsystems.com/mini http://www.iXsystems.com/storage/freenas-certified-storage/

http://www.iXsystems.com/storage/freenas-certified-storage/

 08/20144

EDITOR’S WORD

Editor in Chief:
Ewa Dudzic

ewa.dudzic@software.com.pl

Contributing:
Michael Shirk, Andrey Vedikhin, Petr Topiarz,
Charles Rapenne, Anton Borisov, Jeroen van

Nieuwenhuizen, José B. Alós, Luke Marsden, Salih Khan,
Arkadiusz Majewski, BEng, Toki Winter, Wesley Mouedine

Assaby, Rob Somerville

Top Betatesters & Proofreaders:
Annie Zhang, Denise Ebery, Eric Geissinger, Luca

Ferrari, Imad Soltani, Olaoluwa Omokanwaye, Radjis
Mahangoe, Mani Kanth, Ben Milman, Mark VonFange

Special Thanks:
Annie Zhang
Denise Ebery

Art Director:
Ireneusz Pogroszewski

DTP:
Ireneusz Pogroszewski

ireneusz.pogroszewski@software.com.pl

Senior Consultant/Publisher:
Paweł Marciniak

pawel@software.com.pl

CEO:
Ewa Dudzic

ewa.dudzic@software.com.pl

Publisher:
Hakin9 Media SK

02-676 Warsaw, Poland
Postepu 17D

Poland
worldwide publishing
editors@bsdmag.org

www.bsdmag.org

Hakin9 Media SK is looking for partners from all over the
world. If you are interested in cooperation with us, please

contact us via e-mail: editors@bsdmag.org.

All trademarks presented in the magazine were used
only for informative purposes. All rights to trademarks

presented in the magazine are reserved by the
companies which own them.

Dear Readers,

You are going to read the “Beyond BIOS” issue from
BSD magazine. You will learn how to prepare to install
an EFI environment on an Intel-based, how to perform
the installation and how to manage the computer

once it’s up and running. What is more, our experts will teach
you with moderate experience in any Unix-like system to install
and deploy a quality office server with common applications
and services. Finally, you may find interest in the “Debugging
and Troubleshooting: Fun, Profit and Go Home Earlier” tutorial
provided by Carlos Antonio Neira Bustos. Carlos is going to
represent a real life situation where debugging skills will save us
time, headaches and possibly to find a solution using a minimal
amount of effort.

I would like to express my gratitude to our experts who contributed
to this publication and invite others to cooperate with our magazine.

The next issue of BSD Magazine will be published in 4 weeks.
If you are interested in learning more about the future content
or you would like to get in touch with our team, please feel free
to send your messages to ewa.d@bsdmag.org. I will be more
than pleased to talk and answer all your questions.

Hope you enjoy the issue.

Ewa Dudzic
and BSD team

mailto:mailto:editors%40bsdmag.org?subject=
mailto:mailto:ewa.d%40bsdmag.org?subject=

 08/20146

EDITOR’S WORDContents

Beyond BIOS, The Extended Firmware
Interface (EFI)
José B. Alós

Jose describes the overall features and principles of EFI,
including why you might want to use it, how EFI boots
and what types of boot loaders you might use with it to
enable non-Windows 8 OSes to boot on an EFI computer.
The next three parts of this series will describe how to
prepare to install an EFI environment on an Intel-based
computer, how to perform the installation and how to
manage the computer once it’s up and running.

Debugging and Troubleshooting:
Fun, Profit and Go Home Earlier
Carlos Antonio Neira Bustos

Debugging/Troubleshooting is a really useful skill when
you are working on maintaining legacy applications
doing some small incremental changes to an old code
base, where the code has been touched by so many
hands over the years that it is really becoming a mess.
So, management has decided that the code works as-is
and you are not allowed to change it all over “the right
way (tm)”. In this tutorial, Carlos is going to represent a
real life situation where debugging skills will save us time,
headaches and possibly to find a solution using a minimal
amount of effort.

Deploying an Office Server In FreeBSD,
With File Sharing and E-mail
Ivan Voras

The goal of this tutorial is to teach users with moderate
experience in any Unix-like system to install and deploy
a quality office server with common applications and
services. To ensure this, the tutorials of the workshop will
cover not only how something is done but also why it’s
done. And this will also be reflected in the final test.

Return Oriented Programming
Juanma Menéndez

Juanma, in this article, presents how easily a hacker can
exploit a stack overflow in an NX bit protected system
and the other protections that we must not neglect as
well such as compiler options and Address Space Layer
Randomization (ASLR). Only when these protections
are working together, we must think about a hardened
programming environment.

08

34

16

28

www.ipexpo.co.uk

Co-located at
Cyber Security EXPO is the new place for everybody wanting to protect
their organisation from the increasing commercial threat of cyber
attacks. Cyber Security EXPO has been designed to provide CISOs and
IT security staff the tools, new thinking and policies to meet the 21st
century business cyber security challenge.

Cyber Security EXPO delves into business issues beyond traditional
enterprise security products, providing exclusive content on behaviour
trends and business continuity. At Cyber Security EXPO, discover how
to build trust across the enterprise to securely manage disruptive
technologies such as: Cloud, Mobile, Social, Networks, GRC, Analytics,
Identity & Access, Data, Encryption and more.

FREE

REGIS
TRATIO

N

» The most comprehensive analysis anywhere of how to protect
the modern organisation from cyber threats

 » Free to attend seminars delivered by Mikko Hypponen,
Eugene Kaspersky and many more

 » Attend the “Hack Den” a live open source security lab to
share ideas with White Hat hackers, security gurus,
 Cyber Security EXPO speakers and fellow professionals

 » Network with industry experts and meet with Cyber
Security exhibitors

 » Discover what the IT Security team of the future
will look like

for a new era of cyber threats
A NEW event,

Register NOW
www.cybersec-expo.com

Sponsors

www.cybersec-expo.com

 08/20148

EFI is very different from a PC BIOS, as it offers
a wide range of functionality even before the OS
starts loading. It is modular (you can add custom

code or drivers), runs on various platforms and applica-
tions, its drivers can be written in C instead of assembler
making them more portable, etc. Besides the native CPU
code, EFI supports custom byte code, so drivers can be
compiled so that they are portable between CPU architec-
tures without the need for recompilation.

Introduction
Once upon a time, the first IBM PC 5150 was shipped in
1981 with a new 16-bit processor, made by Intel Corpo-
ration, and bundled with a firmware known as the Basic
Input Output System (BIOS). The BIOS was the interface
between all hardware devices and the Operating System
(OS). At the beginning, there was no problem with this
approach, but when hard disk and RAM memory prices
slowed down, many features supposed a handicap:

• No more than four primary partitions are allowed
• Booting process requires 16-bit real mode

• Boot process starts by loading 512-bytes of data
(Master Boot Record, MBR)

• Disks over 2 TB are not supported by BIOS approach
• BIOS is unable to access any disk file system and

therefore cannot load any executable image file such
as OS kernels

The i386 compatibility architecture was based on keep-
ing the initial bootstrapping process used since 1981.
It did not take advantage of protected mode and 32-bit
register addressing provided by 80386 and later Intel mi-
croprocessors. It was not modified until 2005 at which
time the Extensible Firmware Interface (EFI) was devel-
oped to provide a more versatile and updated boot pro-
cess based on the ability to load and execute ELF imag-
es directly from the initialization code.

In reference to hard disk devices, BIOS-based comput-
ers could only handle up to 232 sectors using 512-byte
sectors. This leads to a 2 TB limit on storage capacity.
Besides, the special partition managed by EFI and termed
EFI Special Partition (ESP) can use both the FAT-32 file
system, as encouraged by EFI Standard, and FAT-16.

Beyond BIOS,
The Extended Firmware
Interface (EFI)
This article describes the overall features and principles of the
Extended Firmware Interface (EFI), including why you might
want to use it, how EFI boots and what types of boot loaders
you might use with it to enable non-Windows 8 OSes to boot on
an EFI computer. The next three parts of this series will describe
how to prepare for the installation of an EFI environment on an
Intel-based computer, how to perform the installation and how
to manage the computer once it’s up and running.

www.bsdmag.org 9

Beyond BIOS, The Extended Firmware Interface (EFI)

It can even use HFS+ for Mac OSx computers.
This ESP has the partition code 0xEF00, which allows a
quick identification.

As the BIOS cannot access a file system on a disk and
therefore is unable to load an executable image file such
as OS kernels, every OS must have its own boot loader
using the BIOS approach, which constitutes a huge source
of problems. A way to avoid the use of separate boot load-
ers for each OS installed, is to use Multi-boot Specification
(MS) which will be covered in another article.

Considering the historical background explained above,
the Extensive Firmware Interface (EFI) has its roots in
1998 with the Intel Boot Initiative (IBI) program. Hence,
the EFI specification, which has been developed and sup-
ported by a consortium integrated by Intel and Microsoft,
among other companies, defines an API and data struc-
tures to handle generic firmware in a wide variety of plat-
forms in order to provide OS loaders, EFI device drivers,
and diagnostics by means of an EFI command interpreter
or EFI Shell.

The first EFI specification was EFI 1.02 released in
2000. Due to legal issues, it was re-released two years
later under the denomination EFI 1.10 and restricted to
Itanium microprocessors. In order to avoid undesirable
scattering, the Unified EFI Forum was created including
companies such as Intel, AMD, AMI, Apple, Dell, HP, IBM,
Phoenix and, of course, Microsoft, among others. This ini-
tiative led to Universal EFI (UEFI) standardization. Lat-
er on, AMD created its own 64-bit architecture, AMD64,
which was backward compatible with IA32. The AMD64
architecture is equivalent to Intel’s EM64T architecture
and it was eventually supported in the UEFI 2.0 standard.
Nowadays, the latter standard is UEFI 2.1 which includes
a few changes regarding its predecessor.

Figure 1. Comparison between BIOS and UEFI approach

Last but not least, EFI can boot a computer faster than
BIOS-based booting. On average, the EFI booting process
is more than 20 seconds faster than using BIOS boot mode.

EFI has its drawbacks too, of course. The most impor-
tant of these is the fact that it’s new. This means that old
boot loaders don’t work with it and users are unfamiliar
with it. Another significant problem is that the EFI boot
process assumes the OS will run in the same bit depth
as the EFI. Because all UEFI-based PCs and most EFI-
based Macs use 64-bit firmware, this means that 64-bit
OSes work best with these computers (the earliest Intel-
based Macs used 32-bit EFIs though). Installing a 32-bit
version of Linux on a computer with a 64-bit EFI is pos-
sible, but you’ll give up runtime EFI interfaces. This makes
boot loader maintenance harder, since the efibootmgr util-
ity (which will be described in part three of this series) re-
lies on such interfaces. For this reason, I recommend in-
stalling a 64-bit distribution if your firmware is 64-bit.

GUID Partition Table (GPT)
The GUID Partition Table (GPT) is a new standard for disk
partitioning providing a set of advanced features such as:

• Modern logical block addressing (LBA)
• 64-bit LBA pointers to manage partitions up to 8 ZB
• Support for non-512 byte sector size disks
• Up to 128 partitions per disk
• Inclusion of backup partition table

Although NetBSD can access GPT disks by using dk-
wedges, it is not possible to boot off a GPT disk in a
straightforward manner and the current strategy to boot
is similar to EFI bootstrapping:

BIOS â†’ LBA0 â†’ PBR on EFI syspart â†’ /boot â†’ NetBSD

kernel

Secure Boot and Microsoft Legacy
One of the most controversial features of EFI is Secure
Boot. This feature was originally intended to improve se-
curity by ensuring that only boot loaders signed with a
crypto key can run. In such a way, malware code cannot
be executed as it is not signed with this key. However,
Microsoft requires Secure Boot enabled for Windows 8
use in desktop and laptop computers and as a practical
matter, Microsoft’s keys are included in the vast majority
of new computers with UEFI support. No other company/
organization has the power to guarantee that their keys
are also included.

The only way to bypass this inconvenience is through
the use of Microsoft’s signing service. Otherwise, the only
way to avoid any issues with non-Windows OSes is to dis-
able Secure Boot, which is perfectly possible if you do not
want to use MS Windows 8.

 08/201410

A Tour on EFI Shell
Before introducing the main topic, it is important to take a
preliminary approach on UEFI usage so that readers can
see the main differences between the former BIOS and the
new paradigm for new 64-bit Intel computers. There are
many possibilities.

Figure 2. BIOS and UEFI End-User Interface

End-User EFI Commands
Whenever a new Intel-based computer is started, the UEFI
program starts its execution to get into a shell as follows:

fs0:\> ver

EFI Specification Revision : 1.10

EFI Vendor : INTEL

EFI Revision : 14.62

 fs0:\> ls

 fs0:\> devices -b

fs0:\> dh -b

fs0:\> cd apps

fs0:\apps> ls

fs0:\apps> load tcpipv4.efi

fs0:\apps> ifconfig -a

fs0:\apps> ifconfig lo0 inet 127.0.0.1 up

For MacOS X computer’s owners, the following com-
mand is useful to examine GPT hard disk.

fs0:\diskutils> diskpart

Eventually, if you need some help, issue the following
command to display commands one screen at a time:

help -b

Programming EFI
If you are an experienced programmer, it is possible to de-
velop and evaluate your own EFI applications even using
an IA-32 computer. To get the true flavor of EFI, you need
two different environments:

Runtime Environment
To explore EFI on IA-64 or in IA32 computers by using a
BIOS32 boot floppy provided by Intel to boot into a real
EFI environment running x86 with legacy BIOS.

Development Environment
To develop EFI programs, such as device drivers, boot
loaders and so on, consisting of:

• A host operating system.
• GNU CC toolchain
• Intel EFI Application Toolkit

Intel EFI Application Toolkit is provided by TianoCore proj-
ect and is available under BSD licenses in www.tianocore.
org. Alternatively, there is a GNU EFI development port
but it is not mature enough yet.

Figure 3. BIOS vs. UEFI API Program Development

In order to compare the main differences between BIOS
and UEFI, be aware that UEFI offers a complete API to
support low-level firmware development.

EFI Boot-Loaders
In comparison with BIOS boot loaders, EFI boot loaders
are still under heavy development as follows:

• ELILO: one of the most reliable bootloaders for GNU/
Linux systems but it requires the kernel to be loaded
from ESP and does not allow other locations.

http://www.tianocore.org
http://www.tianocore.org

www.bsdmag.org

• GRUB-2: supports both BIOS/EFI booting but re-
quires installing an EFI-capable package such as
grub-efi. Regarding its predecessor, GRUB Legacy
does not support the EFI booting process. GRUB-2 is
sometimes very complex to handle.

• rEFIt: is not capable of booting a kernel directly and
requires a chainload to make it possible.

My only experience at the moment with Linux kernels is
that work is being done to embed EFI boot loader support
to load the kernel directly without using a third-part EFI
boot loader. To sum up, have a look at the following table:

Boot loader Load Linux Kernel location Chain load
 ELILO Y ESP N

GRUB-2 Y any Y

rEFIt N N/A Y

Linux kernel Y ESP N

And just to conclude this section, one of our favorite UEFI
boot loaders, and our recommended choice for Mac OS X
fans, is rEFIt, which supports graphical output as shown:

Figure 4. rEFIt UEFI bootloader main screen

No matter which UEFI boot loader you choose, have
a clear understanding about the implications of using it,

https://register.bsdcertification.org//register/get-a-bsdcg-id
http://www.bsdcertification.org/
https://register.bsdcertification.org//register/payment

 08/201412

especially if you have to coexist with Microsoft™ Windows
OS on your computer.

NetBSD/EFI in I386 Architectures
The NetBSD/i386 boot process uses a two-stage boot
loader where the first stage is installed in a well-known
physical location (the first sector of the disk MBR) and this
stage provides the necessary information to start with the
second stage boot loader placed on the root file system
and transfer the control to it. Once the second stage boot
loader has taken control, it swaps the processor into the
protected mode with a full 32/64-bit addressing and no
segmented memory as in 16-bit real mode.

NetBSD and GPT Awareness
It’s possible to boot NetBSD from the GPT partitioned disk
when using a PC BIOS computer. The approach is quite
similar to the NetBSD MBR boot loader and is comprised
of three parts:

• mbr _ gpt/mbr _ gpt _ com0 is an LBA0 loader intended
to be used by a BIOS-based computer, whose main
aim is to find a bootable GUID partition.

• bootxx _ fat16 is a PBR loader which can be execut-
ed by either MBR loader or BIOS. The mission of this
function is to load the NetBSD boot(8) kernel program
and put the loader into an ESP FAT16 partition, which
can be a source of trouble, due to the recommenda-
tion of using ESP FAT32-formatted partitions.

• NetBSD boot(8) kernel loader is in charge of loading
and running the NetBSD kernel from either a GUID or
disklabel partition.

At the moment of writing this article, an effort is being
done to get an EFI boot loader for NetBSD systems in
order to get rid of the former GRUB-based approach. It
will be available by the end of this year, I hope. Anyway,
if you are not using MS Windows 8 in your computer, you
can safely following the instructions to minimize the im-
pact of new EFI-based computers.

Installation Procedure of NetBSD
To build and install the NetBSD loader, you should have
the following software:

• Current NetBSD kernel sources as distributed in sys-
src package.

• sbin/gpt and usr.sbin/installboot loader installation tools.
• Ensure you have the latest GPT bootloader patch

available at http://www.netbsd.org/~mishka/gptboot/
gptboot.patch

The following steps describe what you’d need to build a
NetBSD loader:

1. Download all the sources above
2. Prepare src tree for patching by making directo-

ries missing. See the list of the directories inside the
patchfile:

 $ awk ‘/^WARNING:/ {print $(NF)}’ gptboot.patch

3. Apply the patch
4. Build GPT loaders and tools at the following directories:

 sys/arch/i386/stand/mbr/mbr_gpt

 sys/arch/i386/stand/fatboot/fat16

 sys/arch/i386/stand/boot/biosboot

 sbin/gpt

 usr.sbin/installboot

All of above builds just fine on NetBSD 5.0 (including
amd64) without cross compilation. The install boot may
require passing -DSMALLPROG to make [1] to exclude
extra stuff and simplify the build process. Also, new sys/
sys/bootblock.h has to be used in place of /usr/include/
sys/bootblock.h.

Loader Installation
First of all, you should prepare your disk. The disk should
be GPT partitioned and have at least two partitions, one
for NetBSD, and one for boot loader as follows:

gpt create sd0

gpt add -s 65536 -t efi sd0

gpt add -t ffs sd0

gpt show

then issue a set of dkctl addwedge commands or reattach
the disk to configure dk wedges automatically:

NB: Wedges are not supported on vnd(4) devices
Next: Format partitions accordingly:

 # newfs_msdos -F 16 /dev/dk0

 # newfs /dev/dk1

Please note that newfs_msdos seems to have a bug and
can incorrectly determine file system size (check num-
ber of file sectors reported by newfs_msdos; it must be
less or equal to partition size). If it appears, please re-
format file system explicitly specifying correct fs size via
newfs_msdos -s option.

http://www.netbsd.org/~mishka/gptboot/gptboot.patch
http://www.netbsd.org/~mishka/gptboot/gptboot.patch

www.bsdmag.org 13

Beyond BIOS, The Extended Firmware Interface (EFI)

To install the loaders, issue the following commands:

 # .../gpt biosboot -c $NETBSDSRC_DIR/sys/arch/i386/stand/

mbr/mbr_gpt/mbr_gpt sd0

 # .../installboot /dev/rdk0 $NETBSDSRC_DIR/sys/arch/i386/

stand/fatboot/fat16/bootxx_fat16

 # mount -t msdos /dev/dk0 /mnt

 # cp $NETBSDSRC_DIR/sys/arch/i386/stand/boot/biosboot/

boot /mnt

 # echo “menu=Boot NetBSD:boot hd0b:netbsd”

> /mnt/boot.cfg

 # umount /mnt

The gpt(8) will automatically find the EFI system partition on
sd1 and instruct mbr_gpt where to load PBR from. But rest
loaders should be installed on dk wedges. If you’re confused
about the names, you may use gpt(8) on a wedge, but in this
case mbr_gpt will load PBR from the specified wedge:

 # .../gpt biosboot -c $NETBSDSRC_DIR/sys/arch/i386/stand/

mbr/mbr_gpt/mbr_gpt dk0

Then, install kernel and base system files through:

 # mount /dev/dk1 /mnt

 # cp /netbsd /mnt

Then, create the usual NetBSD hierarchy: /dev, /etc, /
sbin, etc... and specify the root partition as it will be enu-
merated by DKWEDGE_AUTODISCOVER:

 # echo “/dev/dk1 / ffs rw 1 1” > /etc/fstab

 # umount /mnt

Please note the disk names on previous steps. It might
be somewhat confusing, so here is an explanation:

• gpt biosboot ... sd0: LBA0 means installation in the very
first sector of the physical disk, so we should specify the
parent device of our GPT wedges. A dk device can also
be used. In that case, mbr_gpt will look for a GUID parti-
tion matching the dk device at the moment of installation.

• install boot /dev/dk0 ...: bootxx _ fat16 should be in-
stalled onto the EFI System Partition. See gpt add com-
mands earlier. mount -t msdos /dev/dk0 ...: the boot(8)
should be stored on the EFI System Partition as well.

• echo menu=Boot NetBSD: boot hd0b:netbsd ...: the
hd0b means the second partition, which matches dk1
after boot. Please see the to-do list about that. The
resting commands refer to dk1 which is the NetBSD
FFS partition.

Now! Reboot and Have fun. :)

The Easy Way, Using another OS boot-Loader to
Start the BSDthe OS
The fastest and safest way to start a BSD OS like NetBSD
is to use another operating system with full EFI support
such as GNU/Linux in order to use its own boot loader
GRUB as our boot loader for a wide variety of non-Micro-
soft Windows OSes.

1. Install an EFI-compliant GNU/Linux Distribution for x86-
64 bits. I strongly recommend GNU Debian 7.5 IA64.

2. Ensure that GNU Debian has its own ESP. By default,
this ESP is 200 MB size.

3. Power on the UEFI-compliant computer by pressing
down the key “Supr” to stop the default booting process.

4. Enter and execute the grubx64.efi EFI application us-
ing the built-in UEFI shell.

5. Select the desired OS bootloader in the GRUB-2 menu.

That is all. If you do not want or are not happy with deal-
ing with complexity, this is the best alternative to take ad-
vantage of the new UEFI PC architectures and to get rid
of the BIOS the old-fashioned way.

Dealing with the SecureBoot Feature
(SHIM boot Loader)
In this sense, despite Microsoft’s efforts to make our lives
more difficult by means of the SecureBoot feature, thanks
to the work of ... a functional version of an EFI boot load-
er named SHIM which is available for download at http://
www.codon.org.uk/~mjg59/shim-signed/. The procedure
to use it cannot be simpler than the following steps:

• Rename “shim.efi” to “bootx64.efi”.
• Put this file into ‘/boot/EFI directory’.

Now, generate a certificate and put the public half as a bi-
nary DER file somewhere on your install media. On boot,
the end-user will be prompted with a 10-second count-
down and a menu. Choose “Enroll key from disk” and
then browse the file system to select the key and follow
the enrolment prompts. Any boot loader signed with that
key will then be trusted by shim, so you probably want to
make sure that your grubx64.efi image is signed with it.

This design has been borrowed from Suse’s boot load-
er developers and requires that the boot loader itself has
its own key database, distinct from the one provided by
UEFI specification. In such a way, as the boot loader is in
charge of its own key enrolment, the boot loader has the
freedom to manage its own policy.

 08/201414

Testing UEFI
In order to avoid any damage to a real computer, we
strongly recommend you use a virtualized environment to
test any UEFI features before moving on to the real com-
puter as follows:

qemu-system-x86_64 -serial stdio -bios OVMF.fd -hda

fat:<path to boot directory>

qemu-system-x86_64 -serial stdio -bios OVMF.fd -cdrom

<path to ISO image>

Also, FreeBSD developers have documented the way
of creating UEFI media for testing purposes. To wrap
up, let us describe the way of creating a USB HD and
CD-ROM UEFI capable media:

CD-ROM with UEFI support media generation

gpart create -s gpt da0

gpart add -t efi -s 800K da0

gpart add -t freebsd-ufs da0

dd if=/boot/boot1.efifat of=/dev/da0p1

newfs /dev/da0p2

Then, perform the install to the UFS partition, as usual:

mount /dev/da0p2 /mnt

make DESTDIR=/mnt installkernel installworld distribution

echo “/dev/da0p2 / ufs rw 1 1” >> /mnt/etc/fstab

umount /mnt

USB HD with UEFI support media generation

> dd if=/dev/zero of=efiboot.img bs=4k count=100

> mdconfig -a -t vnode -f efiboot.img

> newfs_msdos -F 12 -m 0xf8 /dev/md0

> mount -t msdosfs /dev/md0 /mnt

> mkdir -p /mnt/efi/boot

> cp loader.efi /mnt/efi/boot/bootx64.efi

> umount /mnt

> mdconfig -d -u 0

> makefs -t cd9660 -o bootimage=’i386;efiboot.img’ -o

no-emul-boot -o rockridge -o label=”UEFItest” -o

publisher=”test” uefi-test.iso image

Remember
The boot directory must contain the EFI executables required.

Conclusions and Remarks
If you are wondering why the BIOS approach was kept for
decades, a justification for such longevity may be found

References
[1] Official UEFI documentation, www.uefi.org
[2] Official ELILO, elilo.sourceforge.net
[3] rEFIt boot loader, refit.sourceforge.net

in the fact that MS-DOS for PC was built on top of the BI-
OS and MS-DOS programs called BIOS routines through
software interrupts. Hence, the BIOS disk I/O routine cor-
responds to INT 13h. In order to preserve compatibility,
this approach survived an unexpectedly long time, despite
its technical weaknesses and limitations.

What’s more, EFI was originally designed for Itanium 64-
bit processors although nowadays, IA-32 may support EFI-
based firmware and there are some companies shelling IA-
32 computers with full EFI support, such as Inside Software.

Furthermore, the BIOS depends on VGA which is a lega-
cy standard and does not allow defining new boot devices
unless they’ve already been included in BIOS routines. The
current approach for graphics support is UGA, which is pro-
vided by EFI too. In such a way, the UEFI approach consti-
tutes a true extensible firmware management system.

Acronyms and Abbreviations
MBR Master Boot Record

MS Multi Boot Specification

ESP EFI System Partition

EFI Extended Firmware Interface

IBI Intel Boot Initiative

UEFI Universal Extended Firmware Interface

GPT GUID Partition Table

VGA Video Graphics Adapter

UGA Universal Graphics Interface

JOSÉ B. ALÓS
José B. Alós has developed an important part of his professional career
since 1999 as an EDS employee, as UNIX System Administrator, main-
ly focused on SunOS/Solaris, BSD and GNU/Linux. Five years ago he
joined EADS Defense and Security, nowadays CASSIDIAN as a responsi-
ble for providing support for end-users in aircraft engineering depart-
ments for long-term projects. That is the main reason underneath this
article as VAX/VMS systems still play a paramount role in today’s aero-
space industry for a wide variety of embedded RT systems conceived
for mission and flight operations. He was also Assistant Professor in
the Universdad de Zaragoza (Spain), specialized in the design of High
Availability solutions and his academical background includes a PhD
in Nuclear Engineering and three MsC in Electrical and Mechanical En-
gineering, Theoretical Physics and Applied Mathematics.

http://www.uefi.org
http://elilo.sourceforge.net
mailto:mailto:refit.sourceforge.net?subject=

 08/201416

In this tutorial, I’m going to represent a real life situation
where debugging skills will save us time, headaches
and to possibly find a solution using a minimal amount

of effort.
First, we are going to debug an old legacy C applica-

tion that takes plain text files and inserts them into a da-
tabase until some new change made some dormant “fea-
ture” available for the users (data is getting truncated and
users are complaining, this needs to be fixed ASAP before
close of business). For this situation we are going to use
the classic “gdb” debugger.

Second, we are going to debug a Java application that
is having performance issues (takes 4 times as the old C
application) and it is the new way of doing things instead
of the old C application that gets the data into the data-
base; also unfortunately, believe it or not, it has the same
issue as their old C counterpart.

We will use heap dumps, jdb (http://docs.oracle.com/
javase/7/docs/technotes/tools/windows/jdb.html) and gdb
for this.

In the third scenario, we will go back to the first one but
we will take a different approach. We will debug without
having the source code and only relay in the disassem-
bled code we could see through gdb.

For the Fourth scenario, we will only have a heap dump
and we will need to go all the way to find the issue lurking
in the java code.

Finally, we will approach both situations using Dtrace
which is available in FreeBSD, OSX, Solaris and OpenSo-
laris and we will check if this tool is beneficial and a time
saver in the process.

First Scenario
For debugging, we will use GDB, if you don’t have the
ports collection installed then you should do so (we need
postgresql for this tutorial so you should use ports if you
want an up to date version of postgresql), using the follow-
ing instructions as root:

portsnap fetch

Debugging and
Troubleshooting:
Fun, Profit and Go
Home Earlier
Debugging/Troubleshooting is a really useful skill when
you are working on maintaining legacy applications doing
some small incremental changes to an old code base, where
the code has been touched by so many hands over the
years and it is really becoming a mess. So, management has
decided that the code works as-is and you are not allowed
to change it all over “the right way (tm)”.

http://docs.oracle.com/javase/7/docs/technotes/tools/windows/jdb.html
http://docs.oracle.com/javase/7/docs/technotes/tools/windows/jdb.html

www.bsdmag.org 17

Debugging and Troubleshooting: Fun, Profit and Go Home Earlie

When running Portsnap for the first time, extract the
snapshot into /usr/ports as follows:

portsnap extract

After the first use of Portsnap has been completed
as shown above, /usr/ports can be updated as needed
by running:

#portsnap fetch

portsnap update

When using fetch, the extract or the update operation
may be run consecutively, like so:

portsnap fetch update

We will need the following packages for this tutorial:

• postgresql-client
• postgresql-server

You could install version 8.4.21 using pkg (http://www.
freebsd.org/cgi/man.cgi?query=pkg&sektion=7) as root
using the following commands:

pkg install postgresql84-client-8.4.21

pkg install postgresql84-server-8.4.21_1

For detailed instructions on installing and configuring
postgresql, you should read one of the guides from the
official site: https://wiki.postgresql.org/wiki/Detailed_in-
stallation_guides#FreeBSD.

Also we will use some test data from http://www.briandun-
ning.com/sample-data/ to execute the examples in this tuto-
rial. We will need to download the US 500 sample (this one is

free). you should rename this file to us.csv for the purposes
of this tutorial.

Once you have postgresql installed, you need to create the
us table using the us.sql (All the files needed for this tutorial
are in the workshop.tar.gz included).

The Incident (a.k.a Production Down)
You have received an email stating that the current pro-
cess for adding new clients has stopped working and no-
body knows why, all that management knows is that the
file must be loaded to the database before business clos-
es or they will have to give upper management a serious
explanation about what happened and how they will pre-
vent this from happening in the future. So, to avoid all this
stress you have been selected to fix this problem right
away, and before anyone knows what is actually happen-
ing (which means you need to work all night as needed).
So let’s get to it as quickly as possible as we don’t want
to spend our nap time debugging an old application that
we really don’t want to touch as there is no documentation
nor the original programmers are available. As far as you
know, this program was a product of a joint venture be-
tween contractors of different nationalities. Also the code
and comments are in Spanish.

Let’s start running the program. It takes as a parameter
a file name where the client data is: see Figure 2.

All seems fine, the program does what it is supposed
to do, false alarm again just 30 minutes to go home. Just
to be sure, I’ll check the table to see if all the data is in

Figure 1. Portsnap fetch

Figure 2. Trying to update clients using the us.csv file

Figure 3. Checking if clients present in the us.csv file are in the
database

http://www.freebsd.org/cgi/man.cgi?query=pkg&sektion=7
http://www.freebsd.org/cgi/man.cgi?query=pkg&sektion=7
https://wiki.postgresql.org/wiki/Detailed_installation_guides#FreeBSD
https://wiki.postgresql.org/wiki/Detailed_installation_guides#FreeBSD
http://www.briandunning.com/sample-data/
http://www.briandunning.com/sample-data/

 08/201418

there; after all, that is the issue that has been reported
(see Figure 3).

Tough luck, there is really an issue in here. I’ll fetch the
source code and fire up gdb. I have better things to do
than debug old code all night and according to manage-
ment, this one must be fixed before the next run as the
users are inserting the data manually.

The source code fortunately was still on the backups,
so I created a minimal “makefile” for this. I just needed
this one to compile and let the compiler put all the de-
bugging symbols needed in the object file for an “easy”
debug session.

Figure 4. Simple makefile to start debugging

The “-ggdb” flag is an old gcc flag that does the follow-
ing according to the official manual (https://gcc.gnu.org/
onlinedocs/gcc-4.7.4/gccint/All-Debuggers.html):

When the user specifies -ggdb, GCC normally also uses the val-
ue of this macro to select the debugging output format, but
with two exceptions. If DWARF2_DEBUGGING_INFO is defined,

GCC uses the value DWARF2_DEBUG. Otherwise, if DBX_DE-
BUGGING_INFO is defined, GCC uses DBX_DEBUG.

If we are using clang, this does not matter as you can
use the -g flag “Generate complete debug info”. Let’s com-
pile this thing and see what is happening: see Figure 5.

Well, at least it compiles, it could be worse at this time.
Now, the debug symbols are in there so let’s try setting
some breakpoints to catch the problem at hand, looking at
the source code the first obvious breakpoint must be set in
the insert function call: see Figure 6.

I’ll start a debugging session. I’ll pass as parameter the
us.csv file to the program as follows: see Figure 7. To start
a debugging session, just type the following command:

 gdb <program name>

This will take us to a (gdb) prompt where we could use all
the commands available in the GDB debugger. If we were
to debug a running program, we should type:

(gdb) attach <pid of running program>

And it will take us to the same prompt again, but no-
tice that in this case it will cause the world to stop for
the running program until we let it complete in our debug
session. Also if we had a core dump, we could check
the stack trace, but in this case we have no coredump

Figure 5. Makefile output

https://gcc.gnu.org/onlinedocs/gcc-4.7.4/gccint/All-Debuggers.html
https://gcc.gnu.org/onlinedocs/gcc-4.7.4/gccint/All-Debuggers.html

www.bsdmag.org 19

Debugging and Troubleshooting: Fun, Profit and Go Home Earlie

Figure 6. Setting first breakpoint

Figure 7. Running gdb using us.csv as parameter to the update _ clients program

 08/201420

to take a look. Now first, I’ll set a breakpoint using the
break command and I could type just “b” as a short form,
if we need some help with a command, we just type
the usual:

(gdb) help <command>

For example type “help break” and this screen will be
presented to us:

Now, I have my breakpoint ready at the insert function.
I’ll run the program and check what will be happening at
runtime. I run the program by typing:

(gdb) r ../data/us.csv

Where “r” is the abbreviated form of run. You could pass
the parameters to the program next to the command.
In this case this program only takes one that is the file
containing client data (../data/us.csv): see Figure 9.

As I’m lucky to have the source code, I can use the win
command, that will display the source code and the exact
line the execution has stopped at as follows: see Figure 10.

Then, we need to check the value of the input param-
eter data to the insert function, so I just type:

(gdb) display Data

This command will print at every time, we hit a break-
point the value of the Data variable, as long as the
breakpoint is within the scope of this variable as follows:
see Figure 11.

All seems OK with the data and the functions that make
up the sql statement. So, we need to check where the SQL
statement is executed. Hence, we will put a break at the
query(char*) function, looking at the documentation for

Figure 8. Running gdb help command

Figure 9. Running gdb stopping at a breakpoint

Figure 10. Running gdb using the win command

www.bsdmag.org 21

Debugging and Troubleshooting: Fun, Profit and Go Home Earlie

Figure 11. Running gdb using display command

Figure 12. Running gdb stopping at a breakpoint

 08/201422

the libpq library (http://www.postgresql.org/docs/9.1/static/
libpq-exec.html). It seems not enough to check for NULL.
To really know what the database tells us about the result of
each transaction, we will use the following functions:

PQresultErrorMessage
Returns the error message associated with the que-
ry, or an empty string if there was no error. const char
*PQresultErrorMessage(PGresult *res);

PQresultStatus
Returns the result status of the query. PQresult- Status
can return one of the following values:

 PGRES_EMPTY_QUERY,

 PGRES_COMMAND_OK, /* the query was a command returning

no data */

 PGRES_TUPLES_OK, /* the query successfully returned

tuples */

 PGRES_COPY_OUT,

 PGRES_COPY_IN,

 PGRES_BAD_RESPONSE, /* an unexpected response was

received */

 PGRES_NONFATAL_ERROR,

 PGRES_FATAL_ERROR

Let’s run it again, the result will be as follows: see Figure
14. Where did that come from?, looks like somebody im-
plemented a function that tries to insert a hash but never
worked. By looking at the file, when it was created they
never took out the header from the csv file as shown:
see Figure 15.

Let’s remove that in the file, and try again. Now, we
have another problem according to the table of data types
shown as follows: see Figure 16.

It makes no sense that “LA” is being considered as if it
were a zip code (see Figure 17).

Then, I’ll set a breakpoint in the extract_field function
when it tries to extract the value for the 7th field. I don’t want
to wait for all fields to be processed as just set a condition
in the breakpoint as follows (see Figure 18): Figure 13. Code snipet for the Query function

Figure 14. Running gdb again

Figure 15. Running gdb query returns error

Figure 16. Running gdb SQL error

http://www.postgresql.org/docs/9.1/static/libpq-exec.html
http://www.postgresql.org/docs/9.1/static/libpq-exec.html

www.bsdmag.org 23

Debugging and Troubleshooting: Fun, Profit and Go Home Earlie

Figure 17. us table data types

Figure 18. extract_field

Figure 19. checking the values for the local variables

 08/201424

(gdb) b if nfield == 7

I’ll just type c (short form of continue) to resume the program
execution, I’ll go over every instruction from the program and
check the values for the local variables. In this case I have
stopped at the extract_field function as I’m checking why the
“LA” value is being considered as a zip code (integer, see
Figure 19). And to display the variable value I’m interested in
during this debug session, just by typing:

 display <variable> will do, for example in this case:

(gdb) display field

(gdb) display nfield

These variables that live within the scope of the extract_
field function. If I don’t want to display one of the values
anymore I just have to type: undisplay <variable>.

This is an interesting extraction of the field at position 7
and the value is “Orleans”, but according to the data, the
value should be “LA”. So, what is the problem? it seems
that the extract_field has a bug, this thing is off by a field.
I’ll check the backtrace to remember how I got to this
point. Typing “bt” shows me the backtrace.

A backtrace is a summary of how your program got
where it is. It shows one line per frame, for many frames,
starting with the currently executing frame (frame zero),
followed by its caller (frame one), and on up the stack (see
Figure 20).

Figure 20. extract_field back trace

Figure 21. Detecting the error

There it is, the whole string being tokenize by
the extract field function is “James,Butt....”, as we
see in frame 0, the interesting part is the argu-
ment separator = “,” and the third field of the string:
\”Benton, John B Jr\”.

The bug there is a semicolon in the third field causing the
“LA” value to be considered as a zip code.

Let’s fix the code at runtime. I’ll set a breakpoint at line
242 and replace the string \”Benton, John B Jr\” with
\”Benton John B Jr”\ and see how it goes (Figure 21).

And to set a breakpoint at a specific line of code, use the
following commands:

as in (gdb) b <source.c>:<line number>

(gdb) b update_clientes.c:242.

Now let’s run this again: see Figure 22.

Figure 22. Running again after correcting the error

Figure 23. Displaying the breakpoints info

Debugging and Troubleshooting: Fun, Profit and Go Home Earlie

I had some breakpoints set, so I’ll delete them by typing
d and the breakpoint number, to know which breakpoints
we need to type as follows:

(gdb) i b

That is the short form of breakpoints information: see
Figure 23.

Figure 24. Replacing actual string value

Now, I’ll replace the actual string value with the one
I want using the following command:

(gdb) set <variable> <value>

I have changed the value, but still it is failing. That is be-
cause I picked the wrong breakpoint to change the data.
We should have set a breakpoint at line 121 where the

a d v e r t i s e m e n t

http://www.it-securityguard.com/

 08/201426

string is being passed as a parameter to the function that
calls this subroutine. Let’s fix this and go home!

It worked for the record, we have modified (no SQL error
at insert), but here comes another register with the same
issue as the one we have corrected. At least, we know the
fix we applied at the runtime made it work. So now, it is
just a matter of modifying the data and reprocessing the
data at this point.

This all seems easy at this point but...!! what if we are
not allowed to modify the source code to make the neces-
sary changes for this to work out? What if we don’t have
the source code to debug?

For that situation, we could use some library interposers
and add a wrapper around the function that is causing us
trouble. We could also use gdb to debug even if we don’t
have the source code available.

References
• “31.3. Command Execution Functions.” PostgreSQL: Documentation: 9.1: Command Execution Functions. Web. 08 Aug. 2014.

http://www.postgresql.org/docs/9.1/static/libpq-exec.html.
• “5.5. Using the Ports Collection.” 5.5. Using the Ports Collection. Web. 06 Aug. 2014. http://www.freebsd.org/doc/en_US.ISO8859-1/

books/handbook/ports-using.html.
• “All Debuggers – GNU Compiler Collection (GCC) Internals.” All Debuggers – GNU Compiler Collection (GCC) Internals. Web. 06

Aug. 2014. https://gcc.gnu.org/onlinedocs/gcc-4.7.4/gccint/All-Debuggers.html.
• “Clang 3.6 Documentation.” Clang Compiler User’s Manual –. Web. 06 Aug. 2014. http://clang.llvm.org/docs/UsersManual.

html#cmdoption-g.
• “Debugging with GDB – Backtrace.” Debugging with GDB – Backtrace. Web. 10 Aug. 2014. https://ftp.gnu.org/old-gnu/Manuals/

gdb-5.1.1/html_node/gdb_42.html.
• “Detailed Installation Guides.” – PostgreSQL Wiki. Web. 10 Aug. 2014. https://wiki.postgresql.org/wiki/Detailed_installation_

guides#FreeBSD.

Figure 25. Re-setting the breakpoint

All these topics will be in another tutorial continuing this
tutorial series.

Conclusions
The GNU debugger (gdb) is a really powerful tool that gives
you an edge advantage when troubleshooting an applica-
tion. As a developer, you should be proficient using it and it
will serve you well.

CARLOS ANTONIO NEIRA BUSTOS
Carlos Neira has worked several years as a C/C++ developer and kernel
porting and debugging enterprise legacy applications. He is currently
employed as a C developer under Z/OS, debugging and troubleshoot-
ing legacy applications for a global financial company. Also he is en-
gaged in independent research on affective computing. In his free time
he contributes to the PC-BSD project and enjoys metal detecting.

http://www.postgresql.org/docs/9.1/static/libpq-exec.html
http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/ports-using.html
http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/ports-using.html
https://gcc.gnu.org/onlinedocs/gcc-4.7.4/gccint/All-Debuggers.html
http://clang.llvm.org/docs/UsersManual.html#cmdoption-g
http://clang.llvm.org/docs/UsersManual.html#cmdoption-g
https://ftp.gnu.org/old-gnu/Manuals/gdb-5.1.1/html_node/gdb_42.html
https://ftp.gnu.org/old-gnu/Manuals/gdb-5.1.1/html_node/gdb_42.html
https://wiki.postgresql.org/wiki/Detailed_installation_guides#FreeBSD
https://wiki.postgresql.org/wiki/Detailed_installation_guides#FreeBSD

 08/201428

We have prepared a workshop which aims to
teach users with minimal knowledge of Free-
BSD in a step by step guide how to install and

configure a usable office server from scratch. This server
will be intended to provide office workers or collaborators
with a modern central point used to share data, which they
can trust and rely on in their daily work.

Its main features will be document sharing, collabora-
tion and E-mail. The various tasks of the server will be
handled by different standard Open-Source tools as we
will use Samba and the built-in FreeBSD Network File
System (NFS) servers for serving files in the local net-
work, ownCloud for sharing files across the public Inter-
net, Apache and PHP for serving web applications, Post-
fix for the SMTP server and finally Dovecot for the E-mail
server. We will also add a webmail interface to our server
using RoundCube and we will finally protect our server by
using tools such as ipfw and sshit.

First Step: Installing FreeBSD
Starting with the previous major release of FreeBSD
(9.0), the Operating System can be installed with a new
installer which supports more of its new technologies

Deploying an Office
Server In FreeBSD,
With File Sharing and
E-mail
FreeBSD is a modern and capable operating system (OS)
which can be both robust and easily manageable if used in
an office or a workgroup server environment. It supports
the whole range of cutting edge Open-Source technologies,
which makes using it a completely pleasant and well-
featured experience. The latest FreeBSD release, 10.0,
delivers a bunch of improvements which increase both the
performance and usability of this fine operating system.

Figure 1. The new FreeBSD installer allows the use of current
technologies while being user-friendly enough for new users

www.bsdmag.org 29

Deploying an Office Server In FreeBSD, With File Sharing and E-mail

than its predecessor. At the same time, it offers more
manual configuration options for expert users.

Since the tutorial is about deploying a server, the hard-
ware configuration on which the system will be installed is
assumed to contain two Hard Drives (HD), which will be
mirrored in software using FreeBSD’s GEOM_MIRROR
facility. The usage of two drives for the server is a com-
mon compromise between reliability and cost, and the
same can be said about using Software RAID instead of
a Hardware RAID controller. For a small office server, ge-
neric desktop drives of suitable capacity (e.g. 1.5 TB or
2 TB) are a fine choice, but “enterprise-class” drives are
not that expensive and can be worth searching, if only be-
cause they usually have more mature firmware and dis-
abled on-drive write caching.

Figure 2. The production system will run from a software RAID1
volume powered by GEOM_MIRROR

This initial step of the process is the only one which re-
quires a small detour in the default installation process,
in which the required kernel module for GEOM_MIRROR
will be loaded and the RAID volume is created. The rest of
the installation process is smart enough to recognize such
manually created devices and can use them to create parti-
tions and file systems.

Our setup will use the default FreeBSD file system,
which in the most recent version, is a variant of the UFS2
file system with soft-updates-journaling enabled. For
those who are experienced with Linux, the characteristics
of this file system (very) loosely correspond to ext4 with
the data=writeback option enabled. An alternative file sys-
tem for FreeBSD could be ZFS, which is one of the op-
tions presented in the installer but marked as experimen-
tal, and for this, it will be covered briefly.

The New Package Manager
The traditional way of installing software on FreeBSD
(and many other Unix-like operating systems) is by com-
piling a code. The BSD systems have evolved infrastruc-

ture (the ports collections) which makes this much easier
and offers somewhat advanced features such as depen-
dency tracking, but practical daily use of ports still re-
quires expert knowledge that is not required by the more
streamlined Linux systems. Though the ports can be
used (and regularly are used) to build binary packages,
these packages were until recently both much less flex-
ible and rarely built, which made them an inferior choice
compared to ports.

Finally, the recent version of FreeBSD (V10.0) brings
in a modern binary package manager called “pkg”, with a
new infrastructure and a new approach to binary packag-
es. They are no longer second-class citizens of the Free-
BSD user land but a fully supported and maintained way
of maintaining software, for the most part that is removed
from the quirks of using ports. The package manager is
steadily improving and can now deal with most of the situ-
ations which arise in daily use (such as dependency is-
sues), and the default package repository for FreeBSD
contains almost all software available in ports. Being pre-
built with default options, the binary packages are still less
flexible than ports, but the strategies to reduce the differ-
ence in flexibilities are actively under development.

Though the new package manager is called “pkg” (also
called “pkg-ng” but that name is now obsolete), it does not
share code with other software with the same name, and
most notably that from Solaris. Unusually for a BSD, the
package manager is itself NOT a part of the base system,
but is installed seamlessly on first use.

Local File Sharing with Samba
Samba is the famous Open-source project which brings
compatibility with Microsoft’s file sharing technologies to
non-Windows operating systems. It is an important proj-
ect which receives regular updates and is maintained to
be compatible with the latest Windows variants. The lat-
est version of Samba can act as Active Directory Domain

Figure 3. As the BSD systems are traditionally divided into the "base"
system and the third party applications, the installer only needs to
install the "base" and "kernel" files

 08/201430

Controllers, which expands their capabilities and opens up
new use cases. Samba under FreeBSD works mostly out
of the box, but requires some moderate tuning to be as
high-performing as the users expect it to be.

Local File Sharing with NFS
The Network File System (NFS) is the preferred local file
sharing protocol between Unix-like systems, mostly due
to its ubiquitous presence in such system and the relative
simplicity of its operations. Consequently, it is worth using
only between such systems, as it’s usually poorly suitable
for truly heterogeneous environments. FreeBSD’s native
NFS server and client are well supported and fairly high-
performing, and require minimal configuration and no third
party software to get running.

Apache and PHP For Web Applications
The combination of the Apache web server and the PHP
programming language is the most common web appli-
cation infrastructure on the Internet. The large volume of
applications written in PHP and the relative simplicity of
their setup / installation make it attractive for the office
server. Indeed, all other web applications which will be
covered by this tutorial are written for PHP and will be
powered by this very setup. A very important aspect of
running a web server today is SSL / TLS, a protocol which
provides end-to-end encryption used in HTTPS. The part
of the workshop dealing with Apache will also cover creat-
ing and submitting an SSL certificate request, as well as
its installation.

File Sharing and Collaboration over The
Internet With ownCloud
While Samba and NFS are perfectly suitable for sharing files
in the local network (e.g. within an office or in a company),
they were not created for sharing files over the wider Inter-
net. They lack the flexibility and security properties needed
in the global environment with unknown users and unreliable
connectivity. The recently prominent Open-source project
“ownCloud” will be used in our configuration to provide file
sharing and collaboration across the Internet. It is a pow-
erful tool which consists of several applications, and file
sharing is just one of the options that it supports. Among
its basic features, it supports shared contacts and calen-
dar, and a Dropbox-like desktop file synchronization util-
ity, but it also supports adding third-party applications and
extensions which greatly increase its usability.

E-mail Servers With Postfix and Dovecot
The E-mail system used today relies on two types of pro-
tocols: for routing E-mail to and between E-mail servers,

and for retrieving E-mail from those servers. The proto-
col of the first type is the Simple Mail Transfer Protocol
(SMTP), implemented (among other products) by Post-
fix. There are several protocols of the second type, but
the most feature-rich and the most popular today is IMAP,
implemented (also, among other products), by Dovecot.

An important part of running an e-mail server is spam
protection. This is a topic which can get very complex very
quickly, but the workshop will guide through basic anti-
spam measures which include acceptance rules for the
SMTP server and the SpamAssassin software for active
e-mail scanning.

WebMail with RoundCube
E-mail is traditionally accessed by desktop software (e.g.
Thunderbird, Windows Live Mail, eM Client or Zimbra
Desktop) but using a web-based application is becoming
increasingly convenient because it doesn’t require addi-
tional software installation and the web can be accessed
through corporate and hotel firewalls.

Figure 4. OwnCloud is a web application with several parts, among
which are a Dropbox-like file synchronization service and a shared
calendar

Figure 5. RoundCube is a web GUI for IMAP file servers with a familiar
and simple interface and powerful options and plugins

Deploying an Office Server In FreeBSD, With File Sharing and E-mail

RoundCube is a web application written in PHP which
can act as an IMAP client and present all the E-mail avail-
able on the server in a modern and pretty web-based user
interface. RoundCube is a web application written in PHP
which can act as an IMAP client and present all the e-mail
available on the server in a modern and pretty web-based
user interface.

Protecting The Server With ipfw and sshit
As the server in this tutorial contains services intended to
be used over the Internet, appropriate effort needs to be
undertaken to ensure both the server and its services are
resilient to common attacks which are a matter-of-course
on the open Internet.

FreeBSD’s default firewall is ipfw, with an easy and
straightforward syntax and optional stateful packet in-
spection. A good (and always welcome) addition to it is the
sshit package which blocks brute-force attacks over ssh.

Final Thoughts
The goal of this tutorial is to teach users with moderate
experience in any Unix-like system to install and deploy a
quality office server with common applications and servic-
es. To ensure this, the tutorials of the workshop will cover
not only how something is done but also why it’s done.
And this will also be reflected in the final test.

IVAN VORAS
Ivan Voras is a FreeBSD developer and a long-time user, starting with
FreeBSD 4.3 and throughout all its versions’ history. On the practi-
cal side, he is a researcher, system administrator and a developer, as
the opportunity presents itself, with a wide range of experience from
hardware hacking to cloud computing. He is currently employed at
the University of Zagreb, Faculty of Electrical Engineering and Com-
puting and currently lives in Zagreb, Croatia. You can reach him
through: English Blog: http://ivoras.net/blog | Croatian Blog: http://
hrblog.ivoras.net/ | Google+: https://plus.google.com/.

a d v e r t i s e m e n t

http://ivoras.net/blog
http://hrblog.ivoras.net/
http://hrblog.ivoras.net/
https://plus.google.com/

Deploying an Office / Workgroup
Server on FreeBSD, with E-mail
and File Sharing

Workshop Abstract
Using FreeBSD as a server for common office daily tasks is easy and an approachable task even for users
having no extensive knowledge of its internals. In this workshop, you will learn how to bring up a functioning
server for a small office or a workgroup, which includes a small web server, e-mail with Postfix for SMTP,
Dovecot for IMAP and RoundCube for the webmail user interface, Samba for local file sharing (CIFS / Windows
Networking / Network neighbourhood) and Pydio for remote file access over the web.

Workshop Requirements

1. Basic knowledge of Unix/Linux systems
2. Basic familiarity with command-line operations
3. System (possibly a virtual machine) on which the student will perform the required tasks

Workshop Agenda

Module 1 – Introduction and Server Setup

Tutorial #1 – Introduction, description of what we are going to accomplish, overview of technologies in-
volved, how and why to use them.

Tutorial #2 – Description of various products (packages) and protocols which will be involved in setting up
our server.

Tutorial #3 – Installing a FreeBSD 10 system, advice on choosing hardware, disk and network settings, and
commonly used utility packages.

Module 2 – Installing a Web Server and a File Sharing Web Application

Tutorial #4 – Configuring a simple web server with Apache and PHP

Tutorial #5 – Configuring SSL / TLS: description of how it works, creating a certificate request, submitting it
to cacert.org and installing the resulting certificate

Tutorial #6 – Configuring a file-sharing web application using Pydio

Module 3 – Installing the E-mail Servers and The Webmail Interface

Tutorial #7 – Configuring an e-mail server using Postfix, including anti-spam options.

Tutorial #8 – Configuring an IMAP server using Dovecot.

Tutorial #9 – Configuring a webmail interface to the IMAP server using RoundCube.

Module 4 – Local File Sharing and Firewall

Tutorial #10 – Configuring Windows file sharing with Samba

Tutorial #11 – Configuring Unix file sharing with NFS

Tutorial #12 – Protecting your server with a network firewall using ipfw

INSTRUCTOR BIO
Ivan Voras is a FreeBSD developer and a long-time user, starting with FreeBSD 4.3 and throughout all its versions’

history. On the practical side, he is a researcher, system administrator and a developer, as the opportunity pres-

ents itself, with a wide range of experience from hardware hacking to cloud computing. He is currently employed

at the University of Zagreb, Faculty of Electrical Engineering and Computing and currently lives in Zagreb, Croatia.

You can reach him through:

English Blog: http://ivoras.net/blog

Croatian Blog: http://hrblog.ivoras.net/

Google+: https://plus.google.com/+IvanVoras.

If you want to participate in our BSD online workshops, please

contact Uros Drnovsek at uros.drnovsek@bsdmag.org directly.

Workshop

http://ivoras.net/blog
http://hrblog.ivoras.net/
https://plus.google.com/+IvanVoras

 08/201434

Sadly, few programmers know very much about
compilers’ options as they usually compile pro-
grams with inherited procedures. For instance, the

very well known GCC compiler has a stack protection with
the fstack-protector option [1].

In the middle of the past decade, manufacturers intro-
duced the No-eXecute (NX) bit which prevents the execu-
tion of code beyond the text area of a program. When this
bit is ON, the processor sends a signal to the Operating
System (OS). In addition, it is also necessary for the Op-
erating System to be instructed to stop the code execu-
tion. In Windows, this is achieved by activating the Data
Execution Prevention.

Readers must be aware that the NX bit does not pre-
vent stack overflow and only prevents the execution of
injected code. So, if you are able to exploit such a vul-
nerability, you are completely free to write anything you
like in the stack. However, a clever hacker may think….
“Of course, I can’t execute code but I can alter the nor-
mal flow of execution, making the program go to another
address by means of overwriting the return address lo-
cated in the stack”.

As a concept of proof, we will work with this simple pro-
gram:

#include <ctype.h>

#include <stdio.h>

#include <string.h>

int tabla[5] = {91, 92, 93, 94, 95};

{

FILE *fd;

int in1,in2;

int arr[20];

char var[20];

 if (argc !=2){

 printf(mensaje0,*argv);

 return -1;

 }

 fd = fopen(argv[1],”r”);

 if(fd == NULL)

 {

 fprintf(stderr,mensaje1);

 return -2;

 }

 memset(var,7,sizeof(var));

 memset(arr,6,20*sizeof(int));

 while(fgets(var,20,fd))

 {

 in1 = atoll(var);

 fgets(var,20,fd);

 in2 = atoll(var);

 /* fill array */

 arr[in1]=in2;

 //printf(“%d - %d\n”, arr[in1], tabla[in1]);

 if (arr[in1] != tabla[in1])

 {

 printf(“Sorry values are no correct!\n”);

 return ;

 }

 printf(“Correct”. The process follows\n”);

 printf(“Your are in the core of the program\n”);

Return Oriented
Programming
Since 1988, the Morris Worm stack overflow has been a
nightmare for developers. Several countermeasures have
been created to avoid this kind of attack. Compilers are
pioneers in developing such techniques.

www.bsdmag.org 35

Return Oriented Programming

 return;

 }

}

Code Logic
The program reads a file with 2 lines; each line contains
a number (in1 & in2), in1 is used as the index. If the val-
ue contained in the cell table[in1] is equal to in2, then the

Figure 1.

Figure 2.

Figure 3.

Figure 4.

process is OK and will continue; otherwise, the process
terminates. In a real environment, the table will be out of
the program, even encrypted or secured with another se-
curity measure; but for us, this is not relevant because the
only matter we must deal with is the return address.

Readers may wonder at these odd initializations:

memset(var,7,sizeof(var));

memset(arr,6,20*sizeof(int));

They are only just a trick to make these values more vis-
ible in the stack area. And this is what happens when
parameter values contained in the file are: 2 (in the first
line) and 93 (in the second line): see Figure 1.

And as shown in the next figure, this is what will happen
when the parameter file contains incorrect values: 2, 95:
see Figure 2.

Now, we start the program under Ollydbg [2] and we
should make a breakpoint when jumping depending on
the values in the parameter file. When parameters are set

 08/201436

correctly, the following snapshot should appear. Take a
look: see Figure 3.

As shown, the program jumps to 0x4017F2 and follows
the normal execution (in this example, the normal execu-
tion is only a message). If the data is not correct, a “Data
are not correct....” message appears. Afterwards, control
is transferred to address 0x40180C. Now, let’s take a look
at the stack: see Figure 4.

Due to special initializations, it’s easy to locate the vari-
able areas. We focus on address 0x22FF2C; this is a re-
turn address and we can be 90% sure this return address
would be used for RET instruction at address 0x40180C.
We put another breakpoint in this address for it to contin-
ue execution until this point as shown: see Figure 5.

Great!!! ESP points to address 0x22FF2C. This is
our target!

What should we do next? We must overwrite this ad-
dress with value 0x4017F2, addressing directly the nor-
mal part of the program. This entry in the stack is in an
offset of 6 above our work areas. The program does not

check values in parameter so if we changed the first pa-
rameter to a value of 26, we can overwrite this entry. The
second value must be 0x4017F2 in decimal: 4200434.
This image clarifies the settings: see Figure 6. So, we
must see the message first, which is telling us that the in-
put is not correct. Afterwards, because we have changed
the value of the return address, messages will tell us
your data are correct as follows: We can take advantage
of a vulnerability without injecting code and the exploit
works even while the program is running in a system with
Data Execution Prevention.

One Step More...
The explained technique above is only one way for ex-
ploiting a buffer overflow but there are other ways.

Another way is called return-to-libc. With ret2libc, we
change the return address with the address of a system
function and its parameters. Usually a calling to system()
function. The latter technique I had explained is called
return chaining. We see with an example.

Figure 5.

Figure 6.

Figure 7.

Look at the following Figure 8.
We have identified the following instructions, each one

is followed by RET instruction:

• pop a
• pop c
• mov [ecx], eax.

www.bsdmag.org 37

Return Oriented Programming

Also, there is a RET leading program at the address:
0x684a0f4e.

These instructions extract value on the top of the
stack. And the following RET extracts value which trans-
fers control to:

Code at this address is:

As anterior set of instructions, after extracting value
from the stack and loading in the ECX register transfers
control to this code:

The final result will be as in the following figure:

Figure 8.

This set of values is called “gadget”; a patient hacker
can recollect a large set of instructions’ addresses fol-
lowed by a ret and make a catalogue. Then, by combining
the needed values, he can execute instructions as if the
code was being injected.

We can see gadgets like notes written by criminals in
old movies:

Conclusion
In this article, I introduced how easy a hacker can exploit
a stack overflow in an NX bit protected system and the
other protections that we must not neglect as well such
as compiler options and Address Space Layer Random-
ization (ASLR). Only when these protections are working
together, we must think about a hardened programming
environment.

JUANMA MENÉNDEZ
Juanma Menéndez is a system engineer
with a strong experience in programming
with a wide range of languages and operat-
ing systems. He is currently working as a Se-
nior Consultant at Atos Spain. Juanma is al-
so the author of z3r0 r0ws (http://zerorows.

blogspot.com.es), a blog specialized in security and system program-
ming. He can be reached via LinkedIn: http://es.linkedin.com/in/juan-
mamenendez/.

References
1. “Options That Control Optimization”, https://gcc.gnu.org/

onlinedocs/gcc/Optimize-Options.html#Optimize-Options
2. “Ollydbg is a powerfull debugger”, http://www.ollydbg.de

http://zerorows.blogspot.com.es
http://zerorows.blogspot.com.es
http://es.linkedin.com/in/juanmamenendez/
http://es.linkedin.com/in/juanmamenendez/
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html#Optimize-Options
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html#Optimize-Options
http://www.ollydbg.de/

Debugging and Troubleshooting
Fun, Profit and Go Home Earlier

Workshop Abstract

Debugging/Troubleshooting is a really useful skill when you are working on maintaining legacy applica-
tions making some small incremental changes to an old code base, where the code has been touched by
so many hands over the years that it’s really becoming a mess. So, management has decided that the code
works as it is and you are not allowed to change it all over “the right way (tm)”.

In this tutorial, I’m going to present a real life situation where debugging skills will save us time, heada-
ches and possibly find a solution doing the minimal amount of effort.

Workshop Requirements

•	 Basic knowledge of Unix/Linux systems

Workshop Agenda

First, we are going to debug an old legacy C application that takes plain text files and inserts them into
a database until some new change made some dormant “feature” available for the users (data is getting
truncated and users are complaining, this needs to be fixed ASAP before close of business). For this
situation we are going to use the classic “gdb” debugger.

Second, we are going to debug a Java application that is having performance issues (takes 4 times as longas
the old C application). It is the new way of doing things instead of the old C application that gets the data
into the database. Unfortunately, believe it or not, it has the same issue as their old C counterpart. We will
use heap dumps, jdb and gdb for this.

Workshop

In the third scenario, we will go back to the first one but we will take a different approach. We will
debug without having access to the source code and only relay in the disassembled code we could see
through gdb.

For the Fourth scenario, we will only have a heap dump and we will need to go all the way to find the issue
lurking in the java code.

Finally, we will approach both situations using Dtrace which is available in FreeBSD, OSX, Solaris and
opensolaris and will check if this tool is beneficial and a time saver in the process..

Instructor Bio

Carlos Neira has worked several years as a C/C++ developer and kernel porting and debugging enterprise legacy
applications. He is currently employed as a C developer under Z/OS, debugging and troubleshooting legacy applications
for a global financial company. Also he is engaged in independent research on affective computing . In his free time he
contributes to the PC-BSD project and enjoys metal detecting.

If you want to participate in our BSD online workshops, please

contact Uros Drnovsek at uros.drnovsek@bsdmag.org directly.

www.balabit.com

Among clouds
 Performance and

 Reliability is critical

syslog-ng log server
The world’s first High-Speed Reliable LoggingTM technology

HIGH-SPEED RELIABLE LOGGING
above 500 000 messages per second
zero message loss due to the
Reliable Log Transfer ProtocolTM

trusted log transfer and storage

Download syslog-ng Premium Edition
product evaluation here

Attend to a free logging tech webinar here

The High-Speed Reliable LoggingTM (HSRL) and Reliable Log Transfer ProtocolTM (RLTP) names are registered trademarks of BalaBit IT Security.

IN SOME CASES

nipper studio
HAS VIRTUALLY

REMOVED

MANUAL AUDIT
CISCO SYSTEMS INC.

theNEED FOR a

Titania’s award winning Nipper Studio configuration
auditing tool is helping security consultants and end-
user organizations worldwide improve their network
security. Its reports are more detailed than those typically
produced by scanners, enabling you to maintain a higher
level of vulnerability analysis in the intervals between
penetration tests.

Now used in over 45 countries, Nipper Studio provides a
thorough, fast & cost effective way to securely audit over
100 different types of network device. The NSA, FBI, DoD
& U.S. Treasury already use it, so why not try it for free at
www.titania.com

www.titania.com

U P D A T E
NOW WITH
S T I G
AUDITING

	Cover
	Dear Readers
	Contents
	Beyond BIOS, The Extended Firmware Interface (EFI)
	Debugging and Troubleshooting Fun, Profit and Go Home Earlier
	Deploying an Office Server In FreeBSD, With File Sharing and E-mail
	Return Oriented Programming

	http://www:
	iXsystems:
	com/mini: Off

	ixsystems:
	com/ 6: Off

	bsdcertification 24:
	bsdcertification 25:
	bsdcertification 26:

